Information on Result #58134
There is no OA(288, 102, S2, 44), because the linear programming bound shows that M ≥ 16 122931 071652 792700 286193 893376 / 51129 > 288
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(289, 103, S2, 45) | [i] | Truncation | |
2 | No OOA(289, 102, S2, 2, 45) | [i] | m-Reduction for OOAs | |
3 | No OOA(288, 102, S2, 2, 44) | [i] | Depth Reduction | |
4 | No OOA(288, 102, S2, 3, 44) | [i] | ||
5 | No OOA(288, 102, S2, 4, 44) | [i] | ||
6 | No OOA(288, 102, S2, 5, 44) | [i] | ||
7 | No OOA(288, 102, S2, 6, 44) | [i] | ||
8 | No OOA(288, 102, S2, 7, 44) | [i] | ||
9 | No OOA(288, 102, S2, 8, 44) | [i] | ||
10 | No (44, 88, 102)-net in base 2 | [i] | Extracting Embedded Orthogonal Array | |
11 | No linear OA(2176, 191, F2, 88) (dual of [191, 15, 89]-code) | [i] | Residual Code |