Information on Result #58134

There is no OA(288, 102, S2, 44), because the linear programming bound shows that M ≥ 16 122931 071652 792700 286193 893376 / 51129 > 288

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(289, 103, S2, 45) [i]Truncation
2No OOA(289, 102, S2, 2, 45) [i]m-Reduction for OOAs
3No OOA(288, 102, S2, 2, 44) [i]Depth Reduction
4No OOA(288, 102, S2, 3, 44) [i]
5No OOA(288, 102, S2, 4, 44) [i]
6No OOA(288, 102, S2, 5, 44) [i]
7No OOA(288, 102, S2, 6, 44) [i]
8No OOA(288, 102, S2, 7, 44) [i]
9No OOA(288, 102, S2, 8, 44) [i]
10No (44, 88, 102)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2176, 191, F2, 88) (dual of [191, 15, 89]-code) [i]Residual Code