Information on Result #58262

There is no OA(2126, 149, S2, 60), because the linear programming bound shows that M ≥ 40 354766 457887 934259 048521 444548 255732 989952 / 438495 > 2126

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2127, 150, S2, 61) [i]Truncation
2No OOA(2127, 149, S2, 2, 61) [i]m-Reduction for OOAs
3No OOA(2126, 149, S2, 2, 60) [i]Depth Reduction
4No OOA(2126, 149, S2, 3, 60) [i]
5No OOA(2126, 149, S2, 4, 60) [i]
6No OOA(2126, 149, S2, 5, 60) [i]
7No OOA(2126, 149, S2, 6, 60) [i]
8No OOA(2126, 149, S2, 7, 60) [i]
9No OOA(2126, 149, S2, 8, 60) [i]
10No (66, 126, 149)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2246, 270, F2, 120) (dual of [270, 24, 121]-code) [i]Residual Code
12No linear OA(2127, 161, F2, 60) (dual of [161, 34, 61]-code) [i]Construction Y1 (Bound)