Information on Result #58417

There is no OA(2214, 233, S2, 104), because the linear programming bound shows that M ≥ 77186 327308 052281 732131 664194 137202 618623 144481 733659 013399 636143 505408 / 2 304599 > 2214

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2215, 234, S2, 105) [i]Truncation
2No OOA(2215, 233, S2, 2, 105) [i]m-Reduction for OOAs
3No OOA(2216, 233, S2, 2, 106) [i]
4No OOA(2217, 233, S2, 2, 107) [i]
5No OOA(2214, 233, S2, 2, 104) [i]Depth Reduction
6No OOA(2214, 233, S2, 3, 104) [i]
7No OOA(2214, 233, S2, 4, 104) [i]
8No OOA(2214, 233, S2, 5, 104) [i]
9No OOA(2214, 233, S2, 6, 104) [i]
10No OOA(2214, 233, S2, 7, 104) [i]
11No OOA(2214, 233, S2, 8, 104) [i]
12No (110, 214, 233)-net in base 2 [i]Extracting Embedded Orthogonal Array