Information on Result #58425

There is no OA(2222, 254, S2, 104), because the linear programming bound shows that M ≥ 23801 555700 439648 413133 547239 812693 732035 563032 478015 844957 025588 872518 565888 / 2799 837625 > 2222

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2223, 255, S2, 105) [i]Truncation
2No OOA(2223, 254, S2, 2, 105) [i]m-Reduction for OOAs
3No OOA(2222, 254, S2, 2, 104) [i]Depth Reduction
4No OOA(2222, 254, S2, 3, 104) [i]
5No OOA(2222, 254, S2, 4, 104) [i]
6No OOA(2222, 254, S2, 5, 104) [i]
7No OOA(2222, 254, S2, 6, 104) [i]
8No OOA(2222, 254, S2, 7, 104) [i]
9No OOA(2222, 254, S2, 8, 104) [i]
10No (118, 222, 254)-net in base 2 [i]Extracting Embedded Orthogonal Array