Information on Result #58451
There is no OA(2222, 247, S2, 106), because the linear programming bound shows that M ≥ 84288 764360 551408 231018 394746 066484 986436 989913 374059 111409 815037 315395 878912 / 9835 737417 > 2222
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(2223, 248, S2, 107) | [i] | Truncation | |
2 | No OOA(2223, 247, S2, 2, 107) | [i] | m-Reduction for OOAs | |
3 | No OOA(2222, 247, S2, 2, 106) | [i] | Depth Reduction | |
4 | No OOA(2222, 247, S2, 3, 106) | [i] | ||
5 | No OOA(2222, 247, S2, 4, 106) | [i] | ||
6 | No OOA(2222, 247, S2, 5, 106) | [i] | ||
7 | No OOA(2222, 247, S2, 6, 106) | [i] | ||
8 | No OOA(2222, 247, S2, 7, 106) | [i] | ||
9 | No OOA(2222, 247, S2, 8, 106) | [i] | ||
10 | No (116, 222, 247)-net in base 2 | [i] | Extracting Embedded Orthogonal Array |