Information on Result #58451

There is no OA(2222, 247, S2, 106), because the linear programming bound shows that M ≥ 84288 764360 551408 231018 394746 066484 986436 989913 374059 111409 815037 315395 878912 / 9835 737417 > 2222

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2223, 248, S2, 107) [i]Truncation
2No OOA(2223, 247, S2, 2, 107) [i]m-Reduction for OOAs
3No OOA(2222, 247, S2, 2, 106) [i]Depth Reduction
4No OOA(2222, 247, S2, 3, 106) [i]
5No OOA(2222, 247, S2, 4, 106) [i]
6No OOA(2222, 247, S2, 5, 106) [i]
7No OOA(2222, 247, S2, 6, 106) [i]
8No OOA(2222, 247, S2, 7, 106) [i]
9No OOA(2222, 247, S2, 8, 106) [i]
10No (116, 222, 247)-net in base 2 [i]Extracting Embedded Orthogonal Array