Information on Result #58945

There is no OA(372, 166, S3, 42), because the linear programming bound shows that M ≥ 3708 177920 981865 373588 437755 619329 963493 853633 501053 221945 962924 753226 122178 646596 684570 785490 813971 229149 075678 252631 823220 208670 888172 933548 774937 964032 317385 185116 199333 762378 663726 021334 995353 647735 985557 719209 619572 304083 217640 938540 673734 696000 / 156561 852463 373651 529187 845061 951139 819618 179813 617086 729231 310074 778337 668217 120160 348367 793511 265448 893510 422713 110540 923424 266826 849685 171967 550061 800650 508114 845380 137520 223684 048212 787473 386711 548511 501577 011613 > 372

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(373, 167, S3, 43) [i]Truncation
2No OA(374, 168, S3, 44) [i]
3No OOA(373, 166, S3, 2, 43) [i]m-Reduction for OOAs
4No OOA(372, 166, S3, 2, 42) [i]Depth Reduction
5No OOA(372, 166, S3, 3, 42) [i]
6No OOA(372, 166, S3, 4, 42) [i]
7No OOA(372, 166, S3, 5, 42) [i]
8No (30, 72, 166)-net in base 3 [i]Extracting Embedded Orthogonal Array
9No linear OA(3198, 293, F3, 126) (dual of [293, 95, 127]-code) [i]Residual Code