Information on Result #58946

There is no OA(373, 179, S3, 42), because the linear programming bound shows that M ≥ 1655 853606 621594 847365 162793 421685 754880 172836 255628 739509 006491 538956 023548 309718 301066 295705 004185 498409 491414 287212 260645 557088 062619 662927 494772 522986 898423 456227 215054 895585 942341 350400 / 23155 044107 809386 801034 895150 368402 409396 608253 215274 583956 452423 594904 331538 297952 444628 898814 412153 928733 894090 289314 856067 063972 880940 913479 439182 047891 > 373

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(374, 180, S3, 43) [i]Truncation
2No OA(375, 181, S3, 44) [i]
3No OA(376, 182, S3, 45) [i]
4No OA(377, 183, S3, 46) [i]
5No OOA(374, 179, S3, 2, 43) [i]m-Reduction for OOAs
6No OOA(373, 179, S3, 2, 42) [i]Depth Reduction
7No (31, 73, 179)-net in base 3 [i]Extracting Embedded Orthogonal Array
8No linear OA(3199, 306, F3, 126) (dual of [306, 107, 127]-code) [i]Residual Code