Information on Result #589540
There is no linear OOA(3185, 266, F3, 5, 119) (dual of [(266, 5), 1145, 120]-NRT-code), because 3 times depth reduction would yield linear OOA(3185, 266, F3, 2, 119) (dual of [(266, 2), 347, 120]-NRT-code), but
- 2 step m-reduction [i] would yield linear OA(3183, 266, F3, 117) (dual of [266, 83, 118]-code), but
- residual code [i] would yield OA(366, 148, S3, 39), but
- the linear programming bound shows that M ≥ 12601 938564 535135 135650 704084 012491 922357 294021 765537 541685 645839 226422 815808 943462 058299 571552 747099 509046 004028 133055 653131 287247 568473 006567 967081 409762 196702 490529 324098 740118 016092 247038 547359 649040 681487 642341 125002 274190 164327 183856 840151 147540 583967 171391 388109 925272 913352 964800 / 384 059324 319862 832498 618445 532744 571583 007585 206309 391529 282484 838516 443217 531358 149541 245870 985345 825263 049658 436169 025865 545718 943340 473250 969889 220421 359249 299552 438338 207068 772943 366528 348901 499961 632144 757700 140721 271228 293983 702658 240983 860982 727927 > 366 [i]
- residual code [i] would yield OA(366, 148, S3, 39), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.