Information on Result #59155
There is no OA(3101, 149, S3, 62), because the linear programming bound shows that M ≥ 8233 296774 908639 119144 152333 781856 470978 676092 263597 209204 295760 374352 043379 617679 / 5157 240609 884987 743181 747606 796875 > 3101
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OOA(3101, 149, S3, 2, 62) | [i] | Depth Reduction | |
2 | No OOA(3101, 149, S3, 3, 62) | [i] | ||
3 | No OOA(3101, 149, S3, 4, 62) | [i] | ||
4 | No OOA(3101, 149, S3, 5, 62) | [i] | ||
5 | No (39, 101, 149)-net in base 3 | [i] | Extracting Embedded Orthogonal Array | |
6 | No linear OA(3102, 227, F3, 62) (dual of [227, 125, 63]-code) | [i] | Construction Y1 (Bound) | |
7 | No linear OA(3106, 207, F3, 65) (dual of [207, 101, 66]-code) | [i] | ||
8 | No linear OA(3109, 210, F3, 67) (dual of [210, 101, 68]-code) | [i] |