Information on Result #600271
Function Field F/F16 with g(F) = 3 and N(F) ≥ 38, using a function field by Sémirat
Mode: Constructive and linear.
Optimality
Compare with manYPoints (online database of function field parameters).
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Digital (3, 37)-sequence over F16 | [i] | Niederreiter–Xing Sequence Construction II/III | |
2 | Linear OA(169, 38, F16, 6) (dual of [38, 29, 7]-code) | [i] | Extended Algebraic-Geometric Codes | |
3 | Linear OA(1610, 38, F16, 7) (dual of [38, 28, 8]-code) | [i] | ||
4 | Linear OA(1611, 38, F16, 8) (dual of [38, 27, 9]-code) | [i] | ||
5 | Linear OA(1612, 38, F16, 9) (dual of [38, 26, 10]-code) | [i] | ||
6 | Linear OA(1613, 38, F16, 10) (dual of [38, 25, 11]-code) | [i] | ||
7 | Linear OA(1614, 38, F16, 11) (dual of [38, 24, 12]-code) | [i] | ||
8 | Linear OA(1615, 38, F16, 12) (dual of [38, 23, 13]-code) | [i] | ||
9 | Linear OA(1616, 38, F16, 13) (dual of [38, 22, 14]-code) | [i] | ||
10 | Linear OA(1617, 38, F16, 14) (dual of [38, 21, 15]-code) | [i] | ||
11 | Linear OA(1618, 38, F16, 15) (dual of [38, 20, 16]-code) | [i] | ||
12 | Linear OA(1619, 38, F16, 16) (dual of [38, 19, 17]-code) | [i] | ||
13 | Linear OA(1620, 38, F16, 17) (dual of [38, 18, 18]-code) | [i] | ||
14 | Linear OA(1621, 38, F16, 18) (dual of [38, 17, 19]-code) | [i] | ||
15 | Linear OA(1622, 38, F16, 19) (dual of [38, 16, 20]-code) | [i] | ||
16 | Linear OA(1623, 38, F16, 20) (dual of [38, 15, 21]-code) | [i] | ||
17 | Linear OA(1624, 38, F16, 21) (dual of [38, 14, 22]-code) | [i] | ||
18 | Linear OA(1625, 38, F16, 22) (dual of [38, 13, 23]-code) | [i] | ||
19 | Linear OA(1626, 38, F16, 23) (dual of [38, 12, 24]-code) | [i] | ||
20 | Linear OA(1627, 38, F16, 24) (dual of [38, 11, 25]-code) | [i] | ||
21 | Linear OA(1628, 38, F16, 25) (dual of [38, 10, 26]-code) | [i] | ||
22 | Linear OA(1629, 38, F16, 26) (dual of [38, 9, 27]-code) | [i] | ||
23 | Linear OA(1630, 38, F16, 27) (dual of [38, 8, 28]-code) | [i] | ||
24 | Linear OA(1631, 38, F16, 28) (dual of [38, 7, 29]-code) | [i] | ||
25 | Linear OA(1632, 38, F16, 29) (dual of [38, 6, 30]-code) | [i] | ||
26 | Linear OA(1633, 38, F16, 30) (dual of [38, 5, 31]-code) | [i] | ||
27 | Linear OA(1634, 38, F16, 31) (dual of [38, 4, 32]-code) | [i] | ||
28 | Linear OOA(169, 38, F16, 2, 6) (dual of [(38, 2), 67, 7]-NRT-code) | [i] | Extended Algebraic-Geometric NRT-Codes | |
29 | Linear OOA(1610, 38, F16, 2, 7) (dual of [(38, 2), 66, 8]-NRT-code) | [i] | ||
30 | Linear OOA(1611, 38, F16, 2, 8) (dual of [(38, 2), 65, 9]-NRT-code) | [i] | ||
31 | Linear OOA(1612, 38, F16, 2, 9) (dual of [(38, 2), 64, 10]-NRT-code) | [i] | ||
32 | Linear OOA(1613, 38, F16, 2, 10) (dual of [(38, 2), 63, 11]-NRT-code) | [i] | ||
33 | Linear OOA(1614, 38, F16, 2, 11) (dual of [(38, 2), 62, 12]-NRT-code) | [i] | ||
34 | Linear OOA(1615, 38, F16, 2, 12) (dual of [(38, 2), 61, 13]-NRT-code) | [i] | ||
35 | Linear OOA(1616, 38, F16, 2, 13) (dual of [(38, 2), 60, 14]-NRT-code) | [i] | ||
36 | Linear OOA(1617, 38, F16, 2, 14) (dual of [(38, 2), 59, 15]-NRT-code) | [i] | ||
37 | Linear OOA(1618, 38, F16, 2, 15) (dual of [(38, 2), 58, 16]-NRT-code) | [i] | ||
38 | Linear OOA(1619, 38, F16, 2, 16) (dual of [(38, 2), 57, 17]-NRT-code) | [i] | ||
39 | Linear OOA(1620, 38, F16, 2, 17) (dual of [(38, 2), 56, 18]-NRT-code) | [i] | ||
40 | Linear OOA(1621, 38, F16, 2, 18) (dual of [(38, 2), 55, 19]-NRT-code) | [i] | ||
41 | Linear OOA(1622, 38, F16, 2, 19) (dual of [(38, 2), 54, 20]-NRT-code) | [i] | ||
42 | Linear OOA(1623, 38, F16, 2, 20) (dual of [(38, 2), 53, 21]-NRT-code) | [i] | ||
43 | Linear OOA(1624, 38, F16, 2, 21) (dual of [(38, 2), 52, 22]-NRT-code) | [i] | ||
44 | Linear OOA(1625, 38, F16, 2, 22) (dual of [(38, 2), 51, 23]-NRT-code) | [i] | ||
45 | Linear OOA(1626, 38, F16, 2, 23) (dual of [(38, 2), 50, 24]-NRT-code) | [i] | ||
46 | Linear OOA(1627, 38, F16, 2, 24) (dual of [(38, 2), 49, 25]-NRT-code) | [i] | ||
47 | Linear OOA(1628, 38, F16, 2, 25) (dual of [(38, 2), 48, 26]-NRT-code) | [i] | ||
48 | Linear OOA(1629, 38, F16, 2, 26) (dual of [(38, 2), 47, 27]-NRT-code) | [i] | ||
49 | Linear OOA(1630, 38, F16, 2, 27) (dual of [(38, 2), 46, 28]-NRT-code) | [i] | ||
50 | Linear OOA(1631, 38, F16, 2, 28) (dual of [(38, 2), 45, 29]-NRT-code) | [i] | ||
51 | Linear OOA(1632, 38, F16, 2, 29) (dual of [(38, 2), 44, 30]-NRT-code) | [i] | ||
52 | Linear OOA(1633, 38, F16, 2, 30) (dual of [(38, 2), 43, 31]-NRT-code) | [i] | ||
53 | Linear OOA(1634, 38, F16, 2, 31) (dual of [(38, 2), 42, 32]-NRT-code) | [i] | ||
54 | Linear OOA(1635, 38, F16, 2, 32) (dual of [(38, 2), 41, 33]-NRT-code) | [i] | ||
55 | Linear OOA(1636, 38, F16, 2, 33) (dual of [(38, 2), 40, 34]-NRT-code) | [i] | ||
56 | Linear OOA(1637, 38, F16, 2, 34) (dual of [(38, 2), 39, 35]-NRT-code) | [i] | ||
57 | Linear OOA(1638, 38, F16, 2, 35) (dual of [(38, 2), 38, 36]-NRT-code) | [i] | ||
58 | Linear OOA(1639, 38, F16, 2, 36) (dual of [(38, 2), 37, 37]-NRT-code) | [i] | ||
59 | Linear OOA(1640, 38, F16, 2, 37) (dual of [(38, 2), 36, 38]-NRT-code) | [i] | ||
60 | Linear OOA(1641, 38, F16, 2, 38) (dual of [(38, 2), 35, 39]-NRT-code) | [i] | ||
61 | Linear OOA(1642, 38, F16, 2, 39) (dual of [(38, 2), 34, 40]-NRT-code) | [i] | ||
62 | Linear OOA(1643, 38, F16, 2, 40) (dual of [(38, 2), 33, 41]-NRT-code) | [i] | ||
63 | Linear OOA(1644, 38, F16, 2, 41) (dual of [(38, 2), 32, 42]-NRT-code) | [i] | ||
64 | Linear OOA(1645, 38, F16, 2, 42) (dual of [(38, 2), 31, 43]-NRT-code) | [i] | ||
65 | Linear OOA(1646, 38, F16, 2, 43) (dual of [(38, 2), 30, 44]-NRT-code) | [i] | ||
66 | Linear OOA(1647, 38, F16, 2, 44) (dual of [(38, 2), 29, 45]-NRT-code) | [i] | ||
67 | Linear OOA(1648, 38, F16, 2, 45) (dual of [(38, 2), 28, 46]-NRT-code) | [i] | ||
68 | Linear OOA(1649, 38, F16, 2, 46) (dual of [(38, 2), 27, 47]-NRT-code) | [i] | ||
69 | Linear OOA(1650, 38, F16, 2, 47) (dual of [(38, 2), 26, 48]-NRT-code) | [i] | ||
70 | Linear OOA(1651, 38, F16, 2, 48) (dual of [(38, 2), 25, 49]-NRT-code) | [i] | ||
71 | Linear OOA(1652, 38, F16, 2, 49) (dual of [(38, 2), 24, 50]-NRT-code) | [i] | ||
72 | Linear OOA(1653, 38, F16, 2, 50) (dual of [(38, 2), 23, 51]-NRT-code) | [i] | ||
73 | Linear OOA(1654, 38, F16, 2, 51) (dual of [(38, 2), 22, 52]-NRT-code) | [i] | ||
74 | Linear OOA(1655, 38, F16, 2, 52) (dual of [(38, 2), 21, 53]-NRT-code) | [i] | ||
75 | Linear OOA(1656, 38, F16, 2, 53) (dual of [(38, 2), 20, 54]-NRT-code) | [i] | ||
76 | Linear OOA(1657, 38, F16, 2, 54) (dual of [(38, 2), 19, 55]-NRT-code) | [i] | ||
77 | Linear OOA(1658, 38, F16, 2, 55) (dual of [(38, 2), 18, 56]-NRT-code) | [i] | ||
78 | Linear OOA(1659, 38, F16, 2, 56) (dual of [(38, 2), 17, 57]-NRT-code) | [i] | ||
79 | Linear OOA(1660, 38, F16, 2, 57) (dual of [(38, 2), 16, 58]-NRT-code) | [i] | ||
80 | Linear OOA(1661, 38, F16, 2, 58) (dual of [(38, 2), 15, 59]-NRT-code) | [i] | ||
81 | Linear OOA(1662, 38, F16, 2, 59) (dual of [(38, 2), 14, 60]-NRT-code) | [i] | ||
82 | Linear OOA(1663, 38, F16, 2, 60) (dual of [(38, 2), 13, 61]-NRT-code) | [i] | ||
83 | Linear OOA(1664, 38, F16, 2, 61) (dual of [(38, 2), 12, 62]-NRT-code) | [i] | ||
84 | Linear OOA(1665, 38, F16, 2, 62) (dual of [(38, 2), 11, 63]-NRT-code) | [i] | ||
85 | Linear OOA(1666, 38, F16, 2, 63) (dual of [(38, 2), 10, 64]-NRT-code) | [i] | ||
86 | Linear OOA(1667, 38, F16, 2, 64) (dual of [(38, 2), 9, 65]-NRT-code) | [i] | ||
87 | Linear OOA(1668, 38, F16, 2, 65) (dual of [(38, 2), 8, 66]-NRT-code) | [i] | ||
88 | Linear OOA(1669, 38, F16, 2, 66) (dual of [(38, 2), 7, 67]-NRT-code) | [i] | ||
89 | Linear OOA(1670, 38, F16, 2, 67) (dual of [(38, 2), 6, 68]-NRT-code) | [i] | ||
90 | Linear OOA(1671, 38, F16, 2, 68) (dual of [(38, 2), 5, 69]-NRT-code) | [i] | ||
91 | Linear OOA(1672, 38, F16, 2, 69) (dual of [(38, 2), 4, 70]-NRT-code) | [i] | ||
92 | Linear OOA(1673, 38, F16, 2, 70) (dual of [(38, 2), 3, 71]-NRT-code) | [i] | ||
93 | Linear OOA(1674, 38, F16, 2, 71) (dual of [(38, 2), 2, 72]-NRT-code) | [i] |