Information on Result #600280
Function Field F/F27 with g(F) = 9 and N(F) ≥ 88, using a function field by Sémirat
Mode: Constructive and linear.
Optimality
Compare with manYPoints (online database of function field parameters).
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Digital (9, 87)-sequence over F27 | [i] | Niederreiter–Xing Sequence Construction II/III | |
2 | Linear OA(2723, 88, F27, 14) (dual of [88, 65, 15]-code) | [i] | Extended Algebraic-Geometric Codes | |
3 | Linear OA(2724, 88, F27, 15) (dual of [88, 64, 16]-code) | [i] | ||
4 | Linear OA(2725, 88, F27, 16) (dual of [88, 63, 17]-code) | [i] | ||
5 | Linear OA(2726, 88, F27, 17) (dual of [88, 62, 18]-code) | [i] | ||
6 | Linear OA(2727, 88, F27, 18) (dual of [88, 61, 19]-code) | [i] | ||
7 | Linear OA(2728, 88, F27, 19) (dual of [88, 60, 20]-code) | [i] | ||
8 | Linear OA(2729, 88, F27, 20) (dual of [88, 59, 21]-code) | [i] | ||
9 | Linear OA(2730, 88, F27, 21) (dual of [88, 58, 22]-code) | [i] | ||
10 | Linear OA(2731, 88, F27, 22) (dual of [88, 57, 23]-code) | [i] | ||
11 | Linear OA(2732, 88, F27, 23) (dual of [88, 56, 24]-code) | [i] | ||
12 | Linear OA(2733, 88, F27, 24) (dual of [88, 55, 25]-code) | [i] | ||
13 | Linear OA(2734, 88, F27, 25) (dual of [88, 54, 26]-code) | [i] | ||
14 | Linear OA(2735, 88, F27, 26) (dual of [88, 53, 27]-code) | [i] | ||
15 | Linear OA(2736, 88, F27, 27) (dual of [88, 52, 28]-code) | [i] | ||
16 | Linear OA(2737, 88, F27, 28) (dual of [88, 51, 29]-code) | [i] | ||
17 | Linear OA(2738, 88, F27, 29) (dual of [88, 50, 30]-code) | [i] | ||
18 | Linear OA(2739, 88, F27, 30) (dual of [88, 49, 31]-code) | [i] | ||
19 | Linear OA(2740, 88, F27, 31) (dual of [88, 48, 32]-code) | [i] | ||
20 | Linear OA(2741, 88, F27, 32) (dual of [88, 47, 33]-code) | [i] | ||
21 | Linear OA(2742, 88, F27, 33) (dual of [88, 46, 34]-code) | [i] | ||
22 | Linear OA(2743, 88, F27, 34) (dual of [88, 45, 35]-code) | [i] | ||
23 | Linear OA(2744, 88, F27, 35) (dual of [88, 44, 36]-code) | [i] | ||
24 | Linear OA(2745, 88, F27, 36) (dual of [88, 43, 37]-code) | [i] | ||
25 | Linear OA(2746, 88, F27, 37) (dual of [88, 42, 38]-code) | [i] | ||
26 | Linear OA(2747, 88, F27, 38) (dual of [88, 41, 39]-code) | [i] | ||
27 | Linear OA(2748, 88, F27, 39) (dual of [88, 40, 40]-code) | [i] | ||
28 | Linear OA(2749, 88, F27, 40) (dual of [88, 39, 41]-code) | [i] | ||
29 | Linear OA(2750, 88, F27, 41) (dual of [88, 38, 42]-code) | [i] | ||
30 | Linear OA(2751, 88, F27, 42) (dual of [88, 37, 43]-code) | [i] | ||
31 | Linear OA(2752, 88, F27, 43) (dual of [88, 36, 44]-code) | [i] | ||
32 | Linear OA(2753, 88, F27, 44) (dual of [88, 35, 45]-code) | [i] | ||
33 | Linear OA(2754, 88, F27, 45) (dual of [88, 34, 46]-code) | [i] | ||
34 | Linear OA(2755, 88, F27, 46) (dual of [88, 33, 47]-code) | [i] | ||
35 | Linear OA(2756, 88, F27, 47) (dual of [88, 32, 48]-code) | [i] | ||
36 | Linear OA(2757, 88, F27, 48) (dual of [88, 31, 49]-code) | [i] | ||
37 | Linear OA(2758, 88, F27, 49) (dual of [88, 30, 50]-code) | [i] | ||
38 | Linear OA(2759, 88, F27, 50) (dual of [88, 29, 51]-code) | [i] | ||
39 | Linear OA(2760, 88, F27, 51) (dual of [88, 28, 52]-code) | [i] | ||
40 | Linear OA(2761, 88, F27, 52) (dual of [88, 27, 53]-code) | [i] | ||
41 | Linear OA(2762, 88, F27, 53) (dual of [88, 26, 54]-code) | [i] | ||
42 | Linear OA(2763, 88, F27, 54) (dual of [88, 25, 55]-code) | [i] | ||
43 | Linear OA(2764, 88, F27, 55) (dual of [88, 24, 56]-code) | [i] | ||
44 | Linear OA(2765, 88, F27, 56) (dual of [88, 23, 57]-code) | [i] | ||
45 | Linear OA(2766, 88, F27, 57) (dual of [88, 22, 58]-code) | [i] | ||
46 | Linear OA(2767, 88, F27, 58) (dual of [88, 21, 59]-code) | [i] | ||
47 | Linear OA(2768, 88, F27, 59) (dual of [88, 20, 60]-code) | [i] | ||
48 | Linear OA(2769, 88, F27, 60) (dual of [88, 19, 61]-code) | [i] | ||
49 | Linear OA(2770, 88, F27, 61) (dual of [88, 18, 62]-code) | [i] | ||
50 | Linear OA(2771, 88, F27, 62) (dual of [88, 17, 63]-code) | [i] | ||
51 | Linear OA(2772, 88, F27, 63) (dual of [88, 16, 64]-code) | [i] | ||
52 | Linear OA(2773, 88, F27, 64) (dual of [88, 15, 65]-code) | [i] | ||
53 | Linear OA(2774, 88, F27, 65) (dual of [88, 14, 66]-code) | [i] | ||
54 | Linear OA(2775, 88, F27, 66) (dual of [88, 13, 67]-code) | [i] | ||
55 | Linear OA(2776, 88, F27, 67) (dual of [88, 12, 68]-code) | [i] | ||
56 | Linear OA(2777, 88, F27, 68) (dual of [88, 11, 69]-code) | [i] | ||
57 | Linear OA(2778, 88, F27, 69) (dual of [88, 10, 70]-code) | [i] | ||
58 | Linear OA(2779, 88, F27, 70) (dual of [88, 9, 71]-code) | [i] | ||
59 | Linear OA(2780, 88, F27, 71) (dual of [88, 8, 72]-code) | [i] | ||
60 | Linear OA(2781, 88, F27, 72) (dual of [88, 7, 73]-code) | [i] | ||
61 | Linear OA(2782, 88, F27, 73) (dual of [88, 6, 74]-code) | [i] | ||
62 | Linear OA(2783, 88, F27, 74) (dual of [88, 5, 75]-code) | [i] | ||
63 | Linear OOA(2721, 88, F27, 2, 12) (dual of [(88, 2), 155, 13]-NRT-code) | [i] | Extended Algebraic-Geometric NRT-Codes | |
64 | Linear OOA(2722, 88, F27, 2, 13) (dual of [(88, 2), 154, 14]-NRT-code) | [i] | ||
65 | Linear OOA(2723, 88, F27, 2, 14) (dual of [(88, 2), 153, 15]-NRT-code) | [i] | ||
66 | Linear OOA(2724, 88, F27, 2, 15) (dual of [(88, 2), 152, 16]-NRT-code) | [i] | ||
67 | Linear OOA(2725, 88, F27, 2, 16) (dual of [(88, 2), 151, 17]-NRT-code) | [i] | ||
68 | Linear OOA(2726, 88, F27, 2, 17) (dual of [(88, 2), 150, 18]-NRT-code) | [i] | ||
69 | Linear OOA(2727, 88, F27, 2, 18) (dual of [(88, 2), 149, 19]-NRT-code) | [i] | ||
70 | Linear OOA(2728, 88, F27, 2, 19) (dual of [(88, 2), 148, 20]-NRT-code) | [i] | ||
71 | Linear OOA(2729, 88, F27, 2, 20) (dual of [(88, 2), 147, 21]-NRT-code) | [i] | ||
72 | Linear OOA(2730, 88, F27, 2, 21) (dual of [(88, 2), 146, 22]-NRT-code) | [i] | ||
73 | Linear OOA(2731, 88, F27, 2, 22) (dual of [(88, 2), 145, 23]-NRT-code) | [i] | ||
74 | Linear OOA(2732, 88, F27, 2, 23) (dual of [(88, 2), 144, 24]-NRT-code) | [i] | ||
75 | Linear OOA(2733, 88, F27, 2, 24) (dual of [(88, 2), 143, 25]-NRT-code) | [i] | ||
76 | Linear OOA(2734, 88, F27, 2, 25) (dual of [(88, 2), 142, 26]-NRT-code) | [i] | ||
77 | Linear OOA(2735, 88, F27, 2, 26) (dual of [(88, 2), 141, 27]-NRT-code) | [i] | ||
78 | Linear OOA(2736, 88, F27, 2, 27) (dual of [(88, 2), 140, 28]-NRT-code) | [i] | ||
79 | Linear OOA(2737, 88, F27, 2, 28) (dual of [(88, 2), 139, 29]-NRT-code) | [i] | ||
80 | Linear OOA(2738, 88, F27, 2, 29) (dual of [(88, 2), 138, 30]-NRT-code) | [i] | ||
81 | Linear OOA(2739, 88, F27, 2, 30) (dual of [(88, 2), 137, 31]-NRT-code) | [i] | ||
82 | Linear OOA(2740, 88, F27, 2, 31) (dual of [(88, 2), 136, 32]-NRT-code) | [i] | ||
83 | Linear OOA(2741, 88, F27, 2, 32) (dual of [(88, 2), 135, 33]-NRT-code) | [i] | ||
84 | Linear OOA(2742, 88, F27, 2, 33) (dual of [(88, 2), 134, 34]-NRT-code) | [i] | ||
85 | Linear OOA(2743, 88, F27, 2, 34) (dual of [(88, 2), 133, 35]-NRT-code) | [i] | ||
86 | Linear OOA(2744, 88, F27, 2, 35) (dual of [(88, 2), 132, 36]-NRT-code) | [i] | ||
87 | Linear OOA(2745, 88, F27, 2, 36) (dual of [(88, 2), 131, 37]-NRT-code) | [i] | ||
88 | Linear OOA(2746, 88, F27, 2, 37) (dual of [(88, 2), 130, 38]-NRT-code) | [i] | ||
89 | Linear OOA(2747, 88, F27, 2, 38) (dual of [(88, 2), 129, 39]-NRT-code) | [i] | ||
90 | Linear OOA(2748, 88, F27, 2, 39) (dual of [(88, 2), 128, 40]-NRT-code) | [i] | ||
91 | Linear OOA(2749, 88, F27, 2, 40) (dual of [(88, 2), 127, 41]-NRT-code) | [i] | ||
92 | Linear OOA(2750, 88, F27, 2, 41) (dual of [(88, 2), 126, 42]-NRT-code) | [i] | ||
93 | Linear OOA(2751, 88, F27, 2, 42) (dual of [(88, 2), 125, 43]-NRT-code) | [i] | ||
94 | Linear OOA(2752, 88, F27, 2, 43) (dual of [(88, 2), 124, 44]-NRT-code) | [i] | ||
95 | Linear OOA(2753, 88, F27, 2, 44) (dual of [(88, 2), 123, 45]-NRT-code) | [i] | ||
96 | Linear OOA(2754, 88, F27, 2, 45) (dual of [(88, 2), 122, 46]-NRT-code) | [i] | ||
97 | Linear OOA(2755, 88, F27, 2, 46) (dual of [(88, 2), 121, 47]-NRT-code) | [i] | ||
98 | Linear OOA(2756, 88, F27, 2, 47) (dual of [(88, 2), 120, 48]-NRT-code) | [i] | ||
99 | Linear OOA(2757, 88, F27, 2, 48) (dual of [(88, 2), 119, 49]-NRT-code) | [i] | ||
100 | Linear OOA(2758, 88, F27, 2, 49) (dual of [(88, 2), 118, 50]-NRT-code) | [i] | ||
101 | Linear OOA(2759, 88, F27, 2, 50) (dual of [(88, 2), 117, 51]-NRT-code) | [i] | ||
102 | Linear OOA(2760, 88, F27, 2, 51) (dual of [(88, 2), 116, 52]-NRT-code) | [i] | ||
103 | Linear OOA(2761, 88, F27, 2, 52) (dual of [(88, 2), 115, 53]-NRT-code) | [i] | ||
104 | Linear OOA(2762, 88, F27, 2, 53) (dual of [(88, 2), 114, 54]-NRT-code) | [i] | ||
105 | Linear OOA(2763, 88, F27, 2, 54) (dual of [(88, 2), 113, 55]-NRT-code) | [i] | ||
106 | Linear OOA(2764, 88, F27, 2, 55) (dual of [(88, 2), 112, 56]-NRT-code) | [i] | ||
107 | Linear OOA(2765, 88, F27, 2, 56) (dual of [(88, 2), 111, 57]-NRT-code) | [i] | ||
108 | Linear OOA(2766, 88, F27, 2, 57) (dual of [(88, 2), 110, 58]-NRT-code) | [i] | ||
109 | Linear OOA(2767, 88, F27, 2, 58) (dual of [(88, 2), 109, 59]-NRT-code) | [i] | ||
110 | Linear OOA(2768, 88, F27, 2, 59) (dual of [(88, 2), 108, 60]-NRT-code) | [i] | ||
111 | Linear OOA(2769, 88, F27, 2, 60) (dual of [(88, 2), 107, 61]-NRT-code) | [i] | ||
112 | Linear OOA(2770, 88, F27, 2, 61) (dual of [(88, 2), 106, 62]-NRT-code) | [i] | ||
113 | Linear OOA(2771, 88, F27, 2, 62) (dual of [(88, 2), 105, 63]-NRT-code) | [i] | ||
114 | Linear OOA(2772, 88, F27, 2, 63) (dual of [(88, 2), 104, 64]-NRT-code) | [i] | ||
115 | Linear OOA(2773, 88, F27, 2, 64) (dual of [(88, 2), 103, 65]-NRT-code) | [i] | ||
116 | Linear OOA(2774, 88, F27, 2, 65) (dual of [(88, 2), 102, 66]-NRT-code) | [i] | ||
117 | Linear OOA(2775, 88, F27, 2, 66) (dual of [(88, 2), 101, 67]-NRT-code) | [i] | ||
118 | Linear OOA(2776, 88, F27, 2, 67) (dual of [(88, 2), 100, 68]-NRT-code) | [i] | ||
119 | Linear OOA(2777, 88, F27, 2, 68) (dual of [(88, 2), 99, 69]-NRT-code) | [i] | ||
120 | Linear OOA(2778, 88, F27, 2, 69) (dual of [(88, 2), 98, 70]-NRT-code) | [i] | ||
121 | Linear OOA(2779, 88, F27, 2, 70) (dual of [(88, 2), 97, 71]-NRT-code) | [i] | ||
122 | Linear OOA(2780, 88, F27, 2, 71) (dual of [(88, 2), 96, 72]-NRT-code) | [i] | ||
123 | Linear OOA(2781, 88, F27, 2, 72) (dual of [(88, 2), 95, 73]-NRT-code) | [i] | ||
124 | Linear OOA(2782, 88, F27, 2, 73) (dual of [(88, 2), 94, 74]-NRT-code) | [i] | ||
125 | Linear OOA(2783, 88, F27, 2, 74) (dual of [(88, 2), 93, 75]-NRT-code) | [i] | ||
126 | Linear OOA(2784, 88, F27, 2, 75) (dual of [(88, 2), 92, 76]-NRT-code) | [i] | ||
127 | Linear OOA(2785, 88, F27, 2, 76) (dual of [(88, 2), 91, 77]-NRT-code) | [i] | ||
128 | Linear OOA(2786, 88, F27, 2, 77) (dual of [(88, 2), 90, 78]-NRT-code) | [i] | ||
129 | Linear OOA(2787, 88, F27, 2, 78) (dual of [(88, 2), 89, 79]-NRT-code) | [i] | ||
130 | Linear OOA(2788, 88, F27, 2, 79) (dual of [(88, 2), 88, 80]-NRT-code) | [i] | ||
131 | Linear OOA(2789, 88, F27, 2, 80) (dual of [(88, 2), 87, 81]-NRT-code) | [i] | ||
132 | Linear OOA(2790, 88, F27, 2, 81) (dual of [(88, 2), 86, 82]-NRT-code) | [i] | ||
133 | Linear OOA(2791, 88, F27, 2, 82) (dual of [(88, 2), 85, 83]-NRT-code) | [i] | ||
134 | Linear OOA(2792, 88, F27, 2, 83) (dual of [(88, 2), 84, 84]-NRT-code) | [i] | ||
135 | Linear OOA(2793, 88, F27, 2, 84) (dual of [(88, 2), 83, 85]-NRT-code) | [i] | ||
136 | Linear OOA(2794, 88, F27, 2, 85) (dual of [(88, 2), 82, 86]-NRT-code) | [i] | ||
137 | Linear OOA(2795, 88, F27, 2, 86) (dual of [(88, 2), 81, 87]-NRT-code) | [i] | ||
138 | Linear OOA(2796, 88, F27, 2, 87) (dual of [(88, 2), 80, 88]-NRT-code) | [i] | ||
139 | Linear OOA(2797, 88, F27, 2, 88) (dual of [(88, 2), 79, 89]-NRT-code) | [i] | ||
140 | Linear OOA(2798, 88, F27, 2, 89) (dual of [(88, 2), 78, 90]-NRT-code) | [i] | ||
141 | Linear OOA(2799, 88, F27, 2, 90) (dual of [(88, 2), 77, 91]-NRT-code) | [i] | ||
142 | Linear OOA(27100, 88, F27, 2, 91) (dual of [(88, 2), 76, 92]-NRT-code) | [i] | ||
143 | Linear OOA(27101, 88, F27, 2, 92) (dual of [(88, 2), 75, 93]-NRT-code) | [i] | ||
144 | Linear OOA(27102, 88, F27, 2, 93) (dual of [(88, 2), 74, 94]-NRT-code) | [i] | ||
145 | Linear OOA(27103, 88, F27, 2, 94) (dual of [(88, 2), 73, 95]-NRT-code) | [i] | ||
146 | Linear OOA(27104, 88, F27, 2, 95) (dual of [(88, 2), 72, 96]-NRT-code) | [i] | ||
147 | Linear OOA(27105, 88, F27, 2, 96) (dual of [(88, 2), 71, 97]-NRT-code) | [i] | ||
148 | Linear OOA(27106, 88, F27, 2, 97) (dual of [(88, 2), 70, 98]-NRT-code) | [i] | ||
149 | Linear OOA(27107, 88, F27, 2, 98) (dual of [(88, 2), 69, 99]-NRT-code) | [i] | ||
150 | Linear OOA(27108, 88, F27, 2, 99) (dual of [(88, 2), 68, 100]-NRT-code) | [i] | ||
151 | Linear OOA(27109, 88, F27, 2, 100) (dual of [(88, 2), 67, 101]-NRT-code) | [i] | ||
152 | Linear OOA(27110, 88, F27, 2, 101) (dual of [(88, 2), 66, 102]-NRT-code) | [i] | ||
153 | Linear OA(2782, 87, F27, 73) (dual of [87, 5, 74]-code) | [i] | Algebraic-Geometric Codes | |
154 | Linear OA(2774, 87, F27, 65) (dual of [87, 13, 66]-code) | [i] | ||
155 | Linear OA(2781, 87, F27, 72) (dual of [87, 6, 73]-code) | [i] | ||
156 | Linear OA(2773, 87, F27, 64) (dual of [87, 14, 65]-code) | [i] | ||
157 | Linear OA(2780, 87, F27, 71) (dual of [87, 7, 72]-code) | [i] | ||
158 | Linear OA(2772, 87, F27, 63) (dual of [87, 15, 64]-code) | [i] | ||
159 | Linear OA(2779, 87, F27, 70) (dual of [87, 8, 71]-code) | [i] | ||
160 | Linear OA(2771, 87, F27, 62) (dual of [87, 16, 63]-code) | [i] | ||
161 | Linear OA(2778, 87, F27, 69) (dual of [87, 9, 70]-code) | [i] | ||
162 | Linear OA(2770, 87, F27, 61) (dual of [87, 17, 62]-code) | [i] | ||
163 | Linear OA(2777, 87, F27, 68) (dual of [87, 10, 69]-code) | [i] | ||
164 | Linear OA(2769, 87, F27, 60) (dual of [87, 18, 61]-code) | [i] | ||
165 | Linear OA(2776, 87, F27, 67) (dual of [87, 11, 68]-code) | [i] | ||
166 | Linear OA(2768, 87, F27, 59) (dual of [87, 19, 60]-code) | [i] | ||
167 | Linear OA(2775, 87, F27, 66) (dual of [87, 12, 67]-code) | [i] | ||
168 | Linear OA(2767, 87, F27, 58) (dual of [87, 20, 59]-code) | [i] | ||
169 | Linear OA(2766, 87, F27, 57) (dual of [87, 21, 58]-code) | [i] | ||
170 | Linear OA(2765, 87, F27, 56) (dual of [87, 22, 57]-code) | [i] | ||
171 | Linear OA(2764, 87, F27, 55) (dual of [87, 23, 56]-code) | [i] | ||
172 | Linear OA(2763, 87, F27, 54) (dual of [87, 24, 55]-code) | [i] | ||
173 | Linear OA(2762, 87, F27, 53) (dual of [87, 25, 54]-code) | [i] | ||
174 | Linear OA(2761, 87, F27, 52) (dual of [87, 26, 53]-code) | [i] | ||
175 | Linear OA(2760, 87, F27, 51) (dual of [87, 27, 52]-code) | [i] | ||
176 | Linear OA(2759, 87, F27, 50) (dual of [87, 28, 51]-code) | [i] | ||
177 | Linear OA(2758, 87, F27, 49) (dual of [87, 29, 50]-code) | [i] | ||
178 | Linear OA(2757, 87, F27, 48) (dual of [87, 30, 49]-code) | [i] | ||
179 | Linear OA(2756, 87, F27, 47) (dual of [87, 31, 48]-code) | [i] | ||
180 | Linear OA(2755, 87, F27, 46) (dual of [87, 32, 47]-code) | [i] | ||
181 | Linear OA(2754, 87, F27, 45) (dual of [87, 33, 46]-code) | [i] | ||
182 | Linear OA(2753, 87, F27, 44) (dual of [87, 34, 45]-code) | [i] | ||
183 | Linear OA(2752, 87, F27, 43) (dual of [87, 35, 44]-code) | [i] | ||
184 | Linear OA(2751, 87, F27, 42) (dual of [87, 36, 43]-code) | [i] | ||
185 | Linear OA(2750, 87, F27, 41) (dual of [87, 37, 42]-code) | [i] | ||
186 | Linear OA(2749, 87, F27, 40) (dual of [87, 38, 41]-code) | [i] | ||
187 | Linear OA(2748, 87, F27, 39) (dual of [87, 39, 40]-code) | [i] | ||
188 | Linear OA(2747, 87, F27, 38) (dual of [87, 40, 39]-code) | [i] | ||
189 | Linear OA(2746, 87, F27, 37) (dual of [87, 41, 38]-code) | [i] | ||
190 | Linear OA(2745, 87, F27, 36) (dual of [87, 42, 37]-code) | [i] | ||
191 | Linear OA(2744, 87, F27, 35) (dual of [87, 43, 36]-code) | [i] | ||
192 | Linear OA(2743, 87, F27, 34) (dual of [87, 44, 35]-code) | [i] | ||
193 | Linear OA(2742, 87, F27, 33) (dual of [87, 45, 34]-code) | [i] | ||
194 | Linear OA(2741, 87, F27, 32) (dual of [87, 46, 33]-code) | [i] | ||
195 | Linear OA(2740, 87, F27, 31) (dual of [87, 47, 32]-code) | [i] | ||
196 | Linear OA(2739, 87, F27, 30) (dual of [87, 48, 31]-code) | [i] | ||
197 | Linear OA(2738, 87, F27, 29) (dual of [87, 49, 30]-code) | [i] | ||
198 | Linear OA(2737, 87, F27, 28) (dual of [87, 50, 29]-code) | [i] | ||
199 | Linear OA(2736, 87, F27, 27) (dual of [87, 51, 28]-code) | [i] | ||
200 | Linear OA(2735, 87, F27, 26) (dual of [87, 52, 27]-code) | [i] | ||
201 | Linear OA(2734, 87, F27, 25) (dual of [87, 53, 26]-code) | [i] | ||
202 | Linear OA(2733, 87, F27, 24) (dual of [87, 54, 25]-code) | [i] | ||
203 | Linear OA(2732, 87, F27, 23) (dual of [87, 55, 24]-code) | [i] | ||
204 | Linear OA(2731, 87, F27, 22) (dual of [87, 56, 23]-code) | [i] | ||
205 | Linear OA(2730, 87, F27, 21) (dual of [87, 57, 22]-code) | [i] | ||
206 | Linear OA(2729, 87, F27, 20) (dual of [87, 58, 21]-code) | [i] | ||
207 | Linear OA(2728, 87, F27, 19) (dual of [87, 59, 20]-code) | [i] | ||
208 | Linear OA(2727, 87, F27, 18) (dual of [87, 60, 19]-code) | [i] | ||
209 | Linear OA(2726, 87, F27, 17) (dual of [87, 61, 18]-code) | [i] | ||
210 | Linear OA(2725, 87, F27, 16) (dual of [87, 62, 17]-code) | [i] | ||
211 | Linear OA(2724, 87, F27, 15) (dual of [87, 63, 16]-code) | [i] | ||
212 | Linear OA(2783, 87, F27, 74) (dual of [87, 4, 75]-code) | [i] | ||
213 | Linear OA(2723, 87, F27, 14) (dual of [87, 64, 15]-code) | [i] | ||
214 | Linear OA(2722, 87, F27, 13) (dual of [87, 65, 14]-code) | [i] | ||
215 | Linear OA(2784, 87, F27, 75) (dual of [87, 3, 76]-code) | [i] | ||
216 | Linear OA(2785, 87, F27, 76) (dual of [87, 2, 77]-code) | [i] |