Information on Result #600337
Function Field F/F256 with g(F) = 24 and N(F) ≥ 1025, using K1,2 from the tower of function fields by Niederreiter and Xing based on the tower by GarcÃa and Stichtenoth over F256
Mode: Linear.
Optimality
Compare with manYPoints (online database of function field parameters).
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Digital (24, 1024)-sequence over F256 | [i] | Niederreiter–Xing Sequence Construction II/III | |
2 | Linear OA(25657, 1025, F256, 33) (dual of [1025, 968, 34]-code) | [i] | Extended Algebraic-Geometric Codes | |
3 | Linear OA(25658, 1025, F256, 34) (dual of [1025, 967, 35]-code) | [i] | ||
4 | Linear OA(25659, 1025, F256, 35) (dual of [1025, 966, 36]-code) | [i] | ||
5 | Linear OA(25660, 1025, F256, 36) (dual of [1025, 965, 37]-code) | [i] | ||
6 | Linear OA(25661, 1025, F256, 37) (dual of [1025, 964, 38]-code) | [i] | ||
7 | Linear OA(25662, 1025, F256, 38) (dual of [1025, 963, 39]-code) | [i] | ||
8 | Linear OA(25663, 1025, F256, 39) (dual of [1025, 962, 40]-code) | [i] | ||
9 | Linear OA(25664, 1025, F256, 40) (dual of [1025, 961, 41]-code) | [i] | ||
10 | Linear OA(25665, 1025, F256, 41) (dual of [1025, 960, 42]-code) | [i] | ||
11 | Linear OA(25666, 1025, F256, 42) (dual of [1025, 959, 43]-code) | [i] | ||
12 | Linear OA(25667, 1025, F256, 43) (dual of [1025, 958, 44]-code) | [i] | ||
13 | Linear OA(25668, 1025, F256, 44) (dual of [1025, 957, 45]-code) | [i] | ||
14 | Linear OOA(25652, 1025, F256, 2, 28) (dual of [(1025, 2), 1998, 29]-NRT-code) | [i] | Extended Algebraic-Geometric NRT-Codes | |
15 | Linear OOA(25653, 1025, F256, 2, 29) (dual of [(1025, 2), 1997, 30]-NRT-code) | [i] | ||
16 | Linear OOA(25654, 1025, F256, 2, 30) (dual of [(1025, 2), 1996, 31]-NRT-code) | [i] | ||
17 | Linear OOA(25655, 1025, F256, 2, 31) (dual of [(1025, 2), 1995, 32]-NRT-code) | [i] | ||
18 | Linear OOA(25656, 1025, F256, 2, 32) (dual of [(1025, 2), 1994, 33]-NRT-code) | [i] | ||
19 | Linear OOA(25657, 1025, F256, 2, 33) (dual of [(1025, 2), 1993, 34]-NRT-code) | [i] | ||
20 | Linear OOA(25658, 1025, F256, 2, 34) (dual of [(1025, 2), 1992, 35]-NRT-code) | [i] | ||
21 | Linear OOA(25659, 1025, F256, 2, 35) (dual of [(1025, 2), 1991, 36]-NRT-code) | [i] | ||
22 | Linear OOA(25660, 1025, F256, 2, 36) (dual of [(1025, 2), 1990, 37]-NRT-code) | [i] | ||
23 | Linear OOA(25661, 1025, F256, 2, 37) (dual of [(1025, 2), 1989, 38]-NRT-code) | [i] | ||
24 | Linear OOA(25662, 1025, F256, 2, 38) (dual of [(1025, 2), 1988, 39]-NRT-code) | [i] | ||
25 | Linear OOA(25663, 1025, F256, 2, 39) (dual of [(1025, 2), 1987, 40]-NRT-code) | [i] | ||
26 | Linear OOA(25664, 1025, F256, 2, 40) (dual of [(1025, 2), 1986, 41]-NRT-code) | [i] | ||
27 | Linear OOA(25665, 1025, F256, 2, 41) (dual of [(1025, 2), 1985, 42]-NRT-code) | [i] | ||
28 | Linear OOA(25666, 1025, F256, 2, 42) (dual of [(1025, 2), 1984, 43]-NRT-code) | [i] | ||
29 | Linear OOA(25667, 1025, F256, 2, 43) (dual of [(1025, 2), 1983, 44]-NRT-code) | [i] | ||
30 | Linear OOA(25668, 1025, F256, 2, 44) (dual of [(1025, 2), 1982, 45]-NRT-code) | [i] | ||
31 | Linear OOA(25652, 1025, F256, 3, 28) (dual of [(1025, 3), 3023, 29]-NRT-code) | [i] | ||
32 | Linear OOA(25653, 1025, F256, 3, 29) (dual of [(1025, 3), 3022, 30]-NRT-code) | [i] | ||
33 | Linear OOA(25654, 1025, F256, 3, 30) (dual of [(1025, 3), 3021, 31]-NRT-code) | [i] | ||
34 | Linear OOA(25655, 1025, F256, 3, 31) (dual of [(1025, 3), 3020, 32]-NRT-code) | [i] | ||
35 | Linear OOA(25656, 1025, F256, 3, 32) (dual of [(1025, 3), 3019, 33]-NRT-code) | [i] | ||
36 | Linear OOA(25657, 1025, F256, 3, 33) (dual of [(1025, 3), 3018, 34]-NRT-code) | [i] | ||
37 | Linear OOA(25658, 1025, F256, 3, 34) (dual of [(1025, 3), 3017, 35]-NRT-code) | [i] | ||
38 | Linear OOA(25659, 1025, F256, 3, 35) (dual of [(1025, 3), 3016, 36]-NRT-code) | [i] | ||
39 | Linear OOA(25660, 1025, F256, 3, 36) (dual of [(1025, 3), 3015, 37]-NRT-code) | [i] | ||
40 | Linear OOA(25661, 1025, F256, 3, 37) (dual of [(1025, 3), 3014, 38]-NRT-code) | [i] | ||
41 | Linear OOA(25662, 1025, F256, 3, 38) (dual of [(1025, 3), 3013, 39]-NRT-code) | [i] | ||
42 | Linear OOA(25663, 1025, F256, 3, 39) (dual of [(1025, 3), 3012, 40]-NRT-code) | [i] | ||
43 | Linear OOA(25664, 1025, F256, 3, 40) (dual of [(1025, 3), 3011, 41]-NRT-code) | [i] | ||
44 | Linear OOA(25665, 1025, F256, 3, 41) (dual of [(1025, 3), 3010, 42]-NRT-code) | [i] | ||
45 | Linear OOA(25666, 1025, F256, 3, 42) (dual of [(1025, 3), 3009, 43]-NRT-code) | [i] | ||
46 | Linear OOA(25667, 1025, F256, 3, 43) (dual of [(1025, 3), 3008, 44]-NRT-code) | [i] | ||
47 | Linear OOA(25668, 1025, F256, 3, 44) (dual of [(1025, 3), 3007, 45]-NRT-code) | [i] | ||
48 | Linear OOA(25652, 1025, F256, 4, 28) (dual of [(1025, 4), 4048, 29]-NRT-code) | [i] | ||
49 | Linear OOA(25653, 1025, F256, 4, 29) (dual of [(1025, 4), 4047, 30]-NRT-code) | [i] | ||
50 | Linear OOA(25654, 1025, F256, 4, 30) (dual of [(1025, 4), 4046, 31]-NRT-code) | [i] | ||
51 | Linear OOA(25655, 1025, F256, 4, 31) (dual of [(1025, 4), 4045, 32]-NRT-code) | [i] | ||
52 | Linear OOA(25656, 1025, F256, 4, 32) (dual of [(1025, 4), 4044, 33]-NRT-code) | [i] | ||
53 | Linear OOA(25657, 1025, F256, 4, 33) (dual of [(1025, 4), 4043, 34]-NRT-code) | [i] | ||
54 | Linear OOA(25658, 1025, F256, 4, 34) (dual of [(1025, 4), 4042, 35]-NRT-code) | [i] | ||
55 | Linear OOA(25659, 1025, F256, 4, 35) (dual of [(1025, 4), 4041, 36]-NRT-code) | [i] | ||
56 | Linear OOA(25660, 1025, F256, 4, 36) (dual of [(1025, 4), 4040, 37]-NRT-code) | [i] | ||
57 | Linear OOA(25661, 1025, F256, 4, 37) (dual of [(1025, 4), 4039, 38]-NRT-code) | [i] | ||
58 | Linear OOA(25662, 1025, F256, 4, 38) (dual of [(1025, 4), 4038, 39]-NRT-code) | [i] | ||
59 | Linear OOA(25663, 1025, F256, 4, 39) (dual of [(1025, 4), 4037, 40]-NRT-code) | [i] | ||
60 | Linear OOA(25664, 1025, F256, 4, 40) (dual of [(1025, 4), 4036, 41]-NRT-code) | [i] | ||
61 | Linear OOA(25665, 1025, F256, 4, 41) (dual of [(1025, 4), 4035, 42]-NRT-code) | [i] | ||
62 | Linear OOA(25666, 1025, F256, 4, 42) (dual of [(1025, 4), 4034, 43]-NRT-code) | [i] | ||
63 | Linear OOA(25667, 1025, F256, 4, 43) (dual of [(1025, 4), 4033, 44]-NRT-code) | [i] | ||
64 | Linear OOA(25668, 1025, F256, 4, 44) (dual of [(1025, 4), 4032, 45]-NRT-code) | [i] | ||
65 | Linear OOA(25652, 1025, F256, 5, 28) (dual of [(1025, 5), 5073, 29]-NRT-code) | [i] | ||
66 | Linear OOA(25653, 1025, F256, 5, 29) (dual of [(1025, 5), 5072, 30]-NRT-code) | [i] | ||
67 | Linear OOA(25654, 1025, F256, 5, 30) (dual of [(1025, 5), 5071, 31]-NRT-code) | [i] | ||
68 | Linear OOA(25655, 1025, F256, 5, 31) (dual of [(1025, 5), 5070, 32]-NRT-code) | [i] | ||
69 | Linear OOA(25656, 1025, F256, 5, 32) (dual of [(1025, 5), 5069, 33]-NRT-code) | [i] | ||
70 | Linear OOA(25657, 1025, F256, 5, 33) (dual of [(1025, 5), 5068, 34]-NRT-code) | [i] | ||
71 | Linear OOA(25658, 1025, F256, 5, 34) (dual of [(1025, 5), 5067, 35]-NRT-code) | [i] | ||
72 | Linear OOA(25659, 1025, F256, 5, 35) (dual of [(1025, 5), 5066, 36]-NRT-code) | [i] | ||
73 | Linear OOA(25660, 1025, F256, 5, 36) (dual of [(1025, 5), 5065, 37]-NRT-code) | [i] | ||
74 | Linear OOA(25661, 1025, F256, 5, 37) (dual of [(1025, 5), 5064, 38]-NRT-code) | [i] | ||
75 | Linear OOA(25662, 1025, F256, 5, 38) (dual of [(1025, 5), 5063, 39]-NRT-code) | [i] | ||
76 | Linear OOA(25663, 1025, F256, 5, 39) (dual of [(1025, 5), 5062, 40]-NRT-code) | [i] | ||
77 | Linear OOA(25664, 1025, F256, 5, 40) (dual of [(1025, 5), 5061, 41]-NRT-code) | [i] | ||
78 | Linear OOA(25665, 1025, F256, 5, 41) (dual of [(1025, 5), 5060, 42]-NRT-code) | [i] | ||
79 | Linear OOA(25666, 1025, F256, 5, 42) (dual of [(1025, 5), 5059, 43]-NRT-code) | [i] | ||
80 | Linear OOA(25667, 1025, F256, 5, 43) (dual of [(1025, 5), 5058, 44]-NRT-code) | [i] | ||
81 | Linear OOA(25668, 1025, F256, 5, 44) (dual of [(1025, 5), 5057, 45]-NRT-code) | [i] | ||
82 | Linear OOA(25652, 1025, F256, 6, 28) (dual of [(1025, 6), 6098, 29]-NRT-code) | [i] | ||
83 | Linear OOA(25653, 1025, F256, 6, 29) (dual of [(1025, 6), 6097, 30]-NRT-code) | [i] | ||
84 | Linear OOA(25654, 1025, F256, 6, 30) (dual of [(1025, 6), 6096, 31]-NRT-code) | [i] | ||
85 | Linear OOA(25655, 1025, F256, 6, 31) (dual of [(1025, 6), 6095, 32]-NRT-code) | [i] | ||
86 | Linear OOA(25656, 1025, F256, 6, 32) (dual of [(1025, 6), 6094, 33]-NRT-code) | [i] | ||
87 | Linear OOA(25657, 1025, F256, 6, 33) (dual of [(1025, 6), 6093, 34]-NRT-code) | [i] | ||
88 | Linear OOA(25658, 1025, F256, 6, 34) (dual of [(1025, 6), 6092, 35]-NRT-code) | [i] | ||
89 | Linear OOA(25659, 1025, F256, 6, 35) (dual of [(1025, 6), 6091, 36]-NRT-code) | [i] | ||
90 | Linear OOA(25660, 1025, F256, 6, 36) (dual of [(1025, 6), 6090, 37]-NRT-code) | [i] | ||
91 | Linear OOA(25661, 1025, F256, 6, 37) (dual of [(1025, 6), 6089, 38]-NRT-code) | [i] | ||
92 | Linear OOA(25662, 1025, F256, 6, 38) (dual of [(1025, 6), 6088, 39]-NRT-code) | [i] | ||
93 | Linear OOA(25663, 1025, F256, 6, 39) (dual of [(1025, 6), 6087, 40]-NRT-code) | [i] | ||
94 | Linear OOA(25664, 1025, F256, 6, 40) (dual of [(1025, 6), 6086, 41]-NRT-code) | [i] | ||
95 | Linear OOA(25665, 1025, F256, 6, 41) (dual of [(1025, 6), 6085, 42]-NRT-code) | [i] | ||
96 | Linear OOA(25666, 1025, F256, 6, 42) (dual of [(1025, 6), 6084, 43]-NRT-code) | [i] | ||
97 | Linear OOA(25667, 1025, F256, 6, 43) (dual of [(1025, 6), 6083, 44]-NRT-code) | [i] | ||
98 | Linear OOA(25668, 1025, F256, 6, 44) (dual of [(1025, 6), 6082, 45]-NRT-code) | [i] | ||
99 | Linear OA(25667, 1024, F256, 43) (dual of [1024, 957, 44]-code) | [i] | Algebraic-Geometric Codes | |
100 | Linear OA(25665, 1024, F256, 41) (dual of [1024, 959, 42]-code) | [i] | ||
101 | Linear OA(25666, 1024, F256, 42) (dual of [1024, 958, 43]-code) | [i] | ||
102 | Linear OA(25664, 1024, F256, 40) (dual of [1024, 960, 41]-code) | [i] | ||
103 | Linear OA(25663, 1024, F256, 39) (dual of [1024, 961, 40]-code) | [i] | ||
104 | Linear OA(25662, 1024, F256, 38) (dual of [1024, 962, 39]-code) | [i] | ||
105 | Linear OA(25661, 1024, F256, 37) (dual of [1024, 963, 38]-code) | [i] | ||
106 | Linear OA(25660, 1024, F256, 36) (dual of [1024, 964, 37]-code) | [i] | ||
107 | Linear OA(25659, 1024, F256, 35) (dual of [1024, 965, 36]-code) | [i] | ||
108 | Linear OA(25658, 1024, F256, 34) (dual of [1024, 966, 35]-code) | [i] | ||
109 | Linear OA(25657, 1024, F256, 33) (dual of [1024, 967, 34]-code) | [i] | ||
110 | Linear OOA(25665, 1024, F256, 2, 41) (dual of [(1024, 2), 1983, 42]-NRT-code) | [i] | Algebraic-Geometric NRT-Codes | |
111 | Linear OOA(25661, 1024, F256, 2, 37) (dual of [(1024, 2), 1987, 38]-NRT-code) | [i] | ||
112 | Linear OOA(25664, 1024, F256, 2, 40) (dual of [(1024, 2), 1984, 41]-NRT-code) | [i] | ||
113 | Linear OOA(25660, 1024, F256, 2, 36) (dual of [(1024, 2), 1988, 37]-NRT-code) | [i] | ||
114 | Linear OOA(25663, 1024, F256, 2, 39) (dual of [(1024, 2), 1985, 40]-NRT-code) | [i] | ||
115 | Linear OOA(25659, 1024, F256, 2, 35) (dual of [(1024, 2), 1989, 36]-NRT-code) | [i] |