Information on Result #600695
Function Field F/F25 with g(F) = 24 and N(F) ≥ 184, using an algebraic function field by Teo
Mode: Linear.
Optimality
Compare with manYPoints (online database of function field parameters).
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Digital (24, 183)-sequence over F25 | [i] | Niederreiter–Xing Sequence Construction II/III | |
2 | Linear OA(2557, 184, F25, 33) (dual of [184, 127, 34]-code) | [i] | Extended Algebraic-Geometric Codes | |
3 | Linear OA(2558, 184, F25, 34) (dual of [184, 126, 35]-code) | [i] | ||
4 | Linear OA(2559, 184, F25, 35) (dual of [184, 125, 36]-code) | [i] | ||
5 | Linear OA(2560, 184, F25, 36) (dual of [184, 124, 37]-code) | [i] | ||
6 | Linear OA(2561, 184, F25, 37) (dual of [184, 123, 38]-code) | [i] | ||
7 | Linear OA(2562, 184, F25, 38) (dual of [184, 122, 39]-code) | [i] | ||
8 | Linear OA(2563, 184, F25, 39) (dual of [184, 121, 40]-code) | [i] | ||
9 | Linear OA(2564, 184, F25, 40) (dual of [184, 120, 41]-code) | [i] | ||
10 | Linear OA(2565, 184, F25, 41) (dual of [184, 119, 42]-code) | [i] | ||
11 | Linear OA(2566, 184, F25, 42) (dual of [184, 118, 43]-code) | [i] | ||
12 | Linear OA(2567, 184, F25, 43) (dual of [184, 117, 44]-code) | [i] | ||
13 | Linear OA(2568, 184, F25, 44) (dual of [184, 116, 45]-code) | [i] | ||
14 | Linear OA(2569, 184, F25, 45) (dual of [184, 115, 46]-code) | [i] | ||
15 | Linear OA(2570, 184, F25, 46) (dual of [184, 114, 47]-code) | [i] | ||
16 | Linear OA(2571, 184, F25, 47) (dual of [184, 113, 48]-code) | [i] | ||
17 | Linear OA(2572, 184, F25, 48) (dual of [184, 112, 49]-code) | [i] | ||
18 | Linear OA(2573, 184, F25, 49) (dual of [184, 111, 50]-code) | [i] | ||
19 | Linear OA(2574, 184, F25, 50) (dual of [184, 110, 51]-code) | [i] | ||
20 | Linear OA(2575, 184, F25, 51) (dual of [184, 109, 52]-code) | [i] | ||
21 | Linear OA(2576, 184, F25, 52) (dual of [184, 108, 53]-code) | [i] | ||
22 | Linear OA(2577, 184, F25, 53) (dual of [184, 107, 54]-code) | [i] | ||
23 | Linear OA(2578, 184, F25, 54) (dual of [184, 106, 55]-code) | [i] | ||
24 | Linear OA(2579, 184, F25, 55) (dual of [184, 105, 56]-code) | [i] | ||
25 | Linear OA(2580, 184, F25, 56) (dual of [184, 104, 57]-code) | [i] | ||
26 | Linear OA(2581, 184, F25, 57) (dual of [184, 103, 58]-code) | [i] | ||
27 | Linear OA(2582, 184, F25, 58) (dual of [184, 102, 59]-code) | [i] | ||
28 | Linear OA(2583, 184, F25, 59) (dual of [184, 101, 60]-code) | [i] | ||
29 | Linear OA(2584, 184, F25, 60) (dual of [184, 100, 61]-code) | [i] | ||
30 | Linear OA(2585, 184, F25, 61) (dual of [184, 99, 62]-code) | [i] | ||
31 | Linear OA(2586, 184, F25, 62) (dual of [184, 98, 63]-code) | [i] | ||
32 | Linear OA(2587, 184, F25, 63) (dual of [184, 97, 64]-code) | [i] | ||
33 | Linear OA(2588, 184, F25, 64) (dual of [184, 96, 65]-code) | [i] | ||
34 | Linear OA(2589, 184, F25, 65) (dual of [184, 95, 66]-code) | [i] | ||
35 | Linear OA(2590, 184, F25, 66) (dual of [184, 94, 67]-code) | [i] | ||
36 | Linear OA(2591, 184, F25, 67) (dual of [184, 93, 68]-code) | [i] | ||
37 | Linear OA(2592, 184, F25, 68) (dual of [184, 92, 69]-code) | [i] | ||
38 | Linear OA(2593, 184, F25, 69) (dual of [184, 91, 70]-code) | [i] | ||
39 | Linear OA(2594, 184, F25, 70) (dual of [184, 90, 71]-code) | [i] | ||
40 | Linear OA(2595, 184, F25, 71) (dual of [184, 89, 72]-code) | [i] | ||
41 | Linear OA(2596, 184, F25, 72) (dual of [184, 88, 73]-code) | [i] | ||
42 | Linear OA(2597, 184, F25, 73) (dual of [184, 87, 74]-code) | [i] | ||
43 | Linear OA(2598, 184, F25, 74) (dual of [184, 86, 75]-code) | [i] | ||
44 | Linear OA(2599, 184, F25, 75) (dual of [184, 85, 76]-code) | [i] | ||
45 | Linear OA(25100, 184, F25, 76) (dual of [184, 84, 77]-code) | [i] | ||
46 | Linear OA(25101, 184, F25, 77) (dual of [184, 83, 78]-code) | [i] | ||
47 | Linear OA(25102, 184, F25, 78) (dual of [184, 82, 79]-code) | [i] | ||
48 | Linear OA(25103, 184, F25, 79) (dual of [184, 81, 80]-code) | [i] | ||
49 | Linear OA(25104, 184, F25, 80) (dual of [184, 80, 81]-code) | [i] | ||
50 | Linear OA(25105, 184, F25, 81) (dual of [184, 79, 82]-code) | [i] | ||
51 | Linear OA(25106, 184, F25, 82) (dual of [184, 78, 83]-code) | [i] | ||
52 | Linear OA(25107, 184, F25, 83) (dual of [184, 77, 84]-code) | [i] | ||
53 | Linear OA(25108, 184, F25, 84) (dual of [184, 76, 85]-code) | [i] | ||
54 | Linear OA(25109, 184, F25, 85) (dual of [184, 75, 86]-code) | [i] | ||
55 | Linear OA(25110, 184, F25, 86) (dual of [184, 74, 87]-code) | [i] | ||
56 | Linear OOA(2553, 184, F25, 2, 29) (dual of [(184, 2), 315, 30]-NRT-code) | [i] | Extended Algebraic-Geometric NRT-Codes | |
57 | Linear OOA(2554, 184, F25, 2, 30) (dual of [(184, 2), 314, 31]-NRT-code) | [i] | ||
58 | Linear OOA(2555, 184, F25, 2, 31) (dual of [(184, 2), 313, 32]-NRT-code) | [i] | ||
59 | Linear OOA(2556, 184, F25, 2, 32) (dual of [(184, 2), 312, 33]-NRT-code) | [i] | ||
60 | Linear OOA(2557, 184, F25, 2, 33) (dual of [(184, 2), 311, 34]-NRT-code) | [i] | ||
61 | Linear OOA(2558, 184, F25, 2, 34) (dual of [(184, 2), 310, 35]-NRT-code) | [i] | ||
62 | Linear OOA(2559, 184, F25, 2, 35) (dual of [(184, 2), 309, 36]-NRT-code) | [i] | ||
63 | Linear OOA(2560, 184, F25, 2, 36) (dual of [(184, 2), 308, 37]-NRT-code) | [i] | ||
64 | Linear OOA(2561, 184, F25, 2, 37) (dual of [(184, 2), 307, 38]-NRT-code) | [i] | ||
65 | Linear OOA(2562, 184, F25, 2, 38) (dual of [(184, 2), 306, 39]-NRT-code) | [i] | ||
66 | Linear OOA(2563, 184, F25, 2, 39) (dual of [(184, 2), 305, 40]-NRT-code) | [i] | ||
67 | Linear OOA(2564, 184, F25, 2, 40) (dual of [(184, 2), 304, 41]-NRT-code) | [i] | ||
68 | Linear OOA(2565, 184, F25, 2, 41) (dual of [(184, 2), 303, 42]-NRT-code) | [i] | ||
69 | Linear OOA(2566, 184, F25, 2, 42) (dual of [(184, 2), 302, 43]-NRT-code) | [i] | ||
70 | Linear OOA(2567, 184, F25, 2, 43) (dual of [(184, 2), 301, 44]-NRT-code) | [i] | ||
71 | Linear OOA(2568, 184, F25, 2, 44) (dual of [(184, 2), 300, 45]-NRT-code) | [i] | ||
72 | Linear OOA(2569, 184, F25, 2, 45) (dual of [(184, 2), 299, 46]-NRT-code) | [i] | ||
73 | Linear OOA(2570, 184, F25, 2, 46) (dual of [(184, 2), 298, 47]-NRT-code) | [i] | ||
74 | Linear OOA(2571, 184, F25, 2, 47) (dual of [(184, 2), 297, 48]-NRT-code) | [i] | ||
75 | Linear OOA(2572, 184, F25, 2, 48) (dual of [(184, 2), 296, 49]-NRT-code) | [i] | ||
76 | Linear OOA(2573, 184, F25, 2, 49) (dual of [(184, 2), 295, 50]-NRT-code) | [i] | ||
77 | Linear OOA(2574, 184, F25, 2, 50) (dual of [(184, 2), 294, 51]-NRT-code) | [i] | ||
78 | Linear OOA(2575, 184, F25, 2, 51) (dual of [(184, 2), 293, 52]-NRT-code) | [i] | ||
79 | Linear OOA(2576, 184, F25, 2, 52) (dual of [(184, 2), 292, 53]-NRT-code) | [i] | ||
80 | Linear OOA(2577, 184, F25, 2, 53) (dual of [(184, 2), 291, 54]-NRT-code) | [i] | ||
81 | Linear OOA(2578, 184, F25, 2, 54) (dual of [(184, 2), 290, 55]-NRT-code) | [i] | ||
82 | Linear OOA(2579, 184, F25, 2, 55) (dual of [(184, 2), 289, 56]-NRT-code) | [i] | ||
83 | Linear OOA(2580, 184, F25, 2, 56) (dual of [(184, 2), 288, 57]-NRT-code) | [i] | ||
84 | Linear OOA(2581, 184, F25, 2, 57) (dual of [(184, 2), 287, 58]-NRT-code) | [i] | ||
85 | Linear OOA(2582, 184, F25, 2, 58) (dual of [(184, 2), 286, 59]-NRT-code) | [i] | ||
86 | Linear OOA(2583, 184, F25, 2, 59) (dual of [(184, 2), 285, 60]-NRT-code) | [i] | ||
87 | Linear OOA(2584, 184, F25, 2, 60) (dual of [(184, 2), 284, 61]-NRT-code) | [i] | ||
88 | Linear OOA(2585, 184, F25, 2, 61) (dual of [(184, 2), 283, 62]-NRT-code) | [i] | ||
89 | Linear OOA(2586, 184, F25, 2, 62) (dual of [(184, 2), 282, 63]-NRT-code) | [i] | ||
90 | Linear OOA(2587, 184, F25, 2, 63) (dual of [(184, 2), 281, 64]-NRT-code) | [i] | ||
91 | Linear OOA(2588, 184, F25, 2, 64) (dual of [(184, 2), 280, 65]-NRT-code) | [i] | ||
92 | Linear OOA(2589, 184, F25, 2, 65) (dual of [(184, 2), 279, 66]-NRT-code) | [i] | ||
93 | Linear OOA(2590, 184, F25, 2, 66) (dual of [(184, 2), 278, 67]-NRT-code) | [i] | ||
94 | Linear OOA(2591, 184, F25, 2, 67) (dual of [(184, 2), 277, 68]-NRT-code) | [i] | ||
95 | Linear OOA(2592, 184, F25, 2, 68) (dual of [(184, 2), 276, 69]-NRT-code) | [i] | ||
96 | Linear OOA(2593, 184, F25, 2, 69) (dual of [(184, 2), 275, 70]-NRT-code) | [i] | ||
97 | Linear OOA(2594, 184, F25, 2, 70) (dual of [(184, 2), 274, 71]-NRT-code) | [i] | ||
98 | Linear OOA(2595, 184, F25, 2, 71) (dual of [(184, 2), 273, 72]-NRT-code) | [i] | ||
99 | Linear OOA(2596, 184, F25, 2, 72) (dual of [(184, 2), 272, 73]-NRT-code) | [i] | ||
100 | Linear OOA(2597, 184, F25, 2, 73) (dual of [(184, 2), 271, 74]-NRT-code) | [i] | ||
101 | Linear OOA(2598, 184, F25, 2, 74) (dual of [(184, 2), 270, 75]-NRT-code) | [i] | ||
102 | Linear OOA(2599, 184, F25, 2, 75) (dual of [(184, 2), 269, 76]-NRT-code) | [i] | ||
103 | Linear OOA(25100, 184, F25, 2, 76) (dual of [(184, 2), 268, 77]-NRT-code) | [i] | ||
104 | Linear OOA(25101, 184, F25, 2, 77) (dual of [(184, 2), 267, 78]-NRT-code) | [i] | ||
105 | Linear OOA(25102, 184, F25, 2, 78) (dual of [(184, 2), 266, 79]-NRT-code) | [i] | ||
106 | Linear OOA(25103, 184, F25, 2, 79) (dual of [(184, 2), 265, 80]-NRT-code) | [i] | ||
107 | Linear OOA(25104, 184, F25, 2, 80) (dual of [(184, 2), 264, 81]-NRT-code) | [i] | ||
108 | Linear OOA(25105, 184, F25, 2, 81) (dual of [(184, 2), 263, 82]-NRT-code) | [i] | ||
109 | Linear OOA(25106, 184, F25, 2, 82) (dual of [(184, 2), 262, 83]-NRT-code) | [i] | ||
110 | Linear OOA(25107, 184, F25, 2, 83) (dual of [(184, 2), 261, 84]-NRT-code) | [i] | ||
111 | Linear OOA(25108, 184, F25, 2, 84) (dual of [(184, 2), 260, 85]-NRT-code) | [i] | ||
112 | Linear OOA(25109, 184, F25, 2, 85) (dual of [(184, 2), 259, 86]-NRT-code) | [i] | ||
113 | Linear OOA(25110, 184, F25, 2, 86) (dual of [(184, 2), 258, 87]-NRT-code) | [i] |