Information on Result #600862
Function Field F/F64 with g(F) = 26 and N(F) ≥ 425, using a curve from the manYPoints database
Mode: Linear.
Optimality
Compare with manYPoints (online database of function field parameters).
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Digital (26, 424)-sequence over F64 | [i] | Niederreiter–Xing Sequence Construction II/III | |
2 | Linear OA(6460, 425, F64, 34) (dual of [425, 365, 35]-code) | [i] | Extended Algebraic-Geometric Codes | |
3 | Linear OA(6461, 425, F64, 35) (dual of [425, 364, 36]-code) | [i] | ||
4 | Linear OA(6462, 425, F64, 36) (dual of [425, 363, 37]-code) | [i] | ||
5 | Linear OA(6463, 425, F64, 37) (dual of [425, 362, 38]-code) | [i] | ||
6 | Linear OA(6464, 425, F64, 38) (dual of [425, 361, 39]-code) | [i] | ||
7 | Linear OA(6465, 425, F64, 39) (dual of [425, 360, 40]-code) | [i] | ||
8 | Linear OA(6466, 425, F64, 40) (dual of [425, 359, 41]-code) | [i] | ||
9 | Linear OA(6467, 425, F64, 41) (dual of [425, 358, 42]-code) | [i] | ||
10 | Linear OA(6468, 425, F64, 42) (dual of [425, 357, 43]-code) | [i] | ||
11 | Linear OA(6469, 425, F64, 43) (dual of [425, 356, 44]-code) | [i] | ||
12 | Linear OA(6470, 425, F64, 44) (dual of [425, 355, 45]-code) | [i] | ||
13 | Linear OA(6471, 425, F64, 45) (dual of [425, 354, 46]-code) | [i] | ||
14 | Linear OA(6472, 425, F64, 46) (dual of [425, 353, 47]-code) | [i] | ||
15 | Linear OA(6473, 425, F64, 47) (dual of [425, 352, 48]-code) | [i] | ||
16 | Linear OA(6474, 425, F64, 48) (dual of [425, 351, 49]-code) | [i] | ||
17 | Linear OA(6475, 425, F64, 49) (dual of [425, 350, 50]-code) | [i] | ||
18 | Linear OA(6476, 425, F64, 50) (dual of [425, 349, 51]-code) | [i] | ||
19 | Linear OA(6477, 425, F64, 51) (dual of [425, 348, 52]-code) | [i] | ||
20 | Linear OA(6478, 425, F64, 52) (dual of [425, 347, 53]-code) | [i] | ||
21 | Linear OA(6479, 425, F64, 53) (dual of [425, 346, 54]-code) | [i] | ||
22 | Linear OA(6480, 425, F64, 54) (dual of [425, 345, 55]-code) | [i] | ||
23 | Linear OA(6481, 425, F64, 55) (dual of [425, 344, 56]-code) | [i] | ||
24 | Linear OA(6482, 425, F64, 56) (dual of [425, 343, 57]-code) | [i] | ||
25 | Linear OA(6483, 425, F64, 57) (dual of [425, 342, 58]-code) | [i] | ||
26 | Linear OA(6484, 425, F64, 58) (dual of [425, 341, 59]-code) | [i] | ||
27 | Linear OA(6485, 425, F64, 59) (dual of [425, 340, 60]-code) | [i] | ||
28 | Linear OA(6486, 425, F64, 60) (dual of [425, 339, 61]-code) | [i] | ||
29 | Linear OA(6487, 425, F64, 61) (dual of [425, 338, 62]-code) | [i] | ||
30 | Linear OA(6488, 425, F64, 62) (dual of [425, 337, 63]-code) | [i] | ||
31 | Linear OA(6489, 425, F64, 63) (dual of [425, 336, 64]-code) | [i] | ||
32 | Linear OA(6490, 425, F64, 64) (dual of [425, 335, 65]-code) | [i] | ||
33 | Linear OA(6491, 425, F64, 65) (dual of [425, 334, 66]-code) | [i] | ||
34 | Linear OOA(6455, 425, F64, 2, 29) (dual of [(425, 2), 795, 30]-NRT-code) | [i] | Extended Algebraic-Geometric NRT-Codes | |
35 | Linear OOA(6456, 425, F64, 2, 30) (dual of [(425, 2), 794, 31]-NRT-code) | [i] | ||
36 | Linear OOA(6457, 425, F64, 2, 31) (dual of [(425, 2), 793, 32]-NRT-code) | [i] | ||
37 | Linear OOA(6458, 425, F64, 2, 32) (dual of [(425, 2), 792, 33]-NRT-code) | [i] | ||
38 | Linear OOA(6459, 425, F64, 2, 33) (dual of [(425, 2), 791, 34]-NRT-code) | [i] | ||
39 | Linear OOA(6460, 425, F64, 2, 34) (dual of [(425, 2), 790, 35]-NRT-code) | [i] | ||
40 | Linear OOA(6461, 425, F64, 2, 35) (dual of [(425, 2), 789, 36]-NRT-code) | [i] | ||
41 | Linear OOA(6462, 425, F64, 2, 36) (dual of [(425, 2), 788, 37]-NRT-code) | [i] | ||
42 | Linear OOA(6463, 425, F64, 2, 37) (dual of [(425, 2), 787, 38]-NRT-code) | [i] | ||
43 | Linear OOA(6464, 425, F64, 2, 38) (dual of [(425, 2), 786, 39]-NRT-code) | [i] | ||
44 | Linear OOA(6465, 425, F64, 2, 39) (dual of [(425, 2), 785, 40]-NRT-code) | [i] | ||
45 | Linear OOA(6466, 425, F64, 2, 40) (dual of [(425, 2), 784, 41]-NRT-code) | [i] | ||
46 | Linear OOA(6467, 425, F64, 2, 41) (dual of [(425, 2), 783, 42]-NRT-code) | [i] | ||
47 | Linear OOA(6468, 425, F64, 2, 42) (dual of [(425, 2), 782, 43]-NRT-code) | [i] | ||
48 | Linear OOA(6469, 425, F64, 2, 43) (dual of [(425, 2), 781, 44]-NRT-code) | [i] | ||
49 | Linear OOA(6470, 425, F64, 2, 44) (dual of [(425, 2), 780, 45]-NRT-code) | [i] | ||
50 | Linear OOA(6471, 425, F64, 2, 45) (dual of [(425, 2), 779, 46]-NRT-code) | [i] | ||
51 | Linear OOA(6472, 425, F64, 2, 46) (dual of [(425, 2), 778, 47]-NRT-code) | [i] | ||
52 | Linear OOA(6473, 425, F64, 2, 47) (dual of [(425, 2), 777, 48]-NRT-code) | [i] | ||
53 | Linear OOA(6474, 425, F64, 2, 48) (dual of [(425, 2), 776, 49]-NRT-code) | [i] | ||
54 | Linear OOA(6475, 425, F64, 2, 49) (dual of [(425, 2), 775, 50]-NRT-code) | [i] | ||
55 | Linear OOA(6476, 425, F64, 2, 50) (dual of [(425, 2), 774, 51]-NRT-code) | [i] | ||
56 | Linear OOA(6477, 425, F64, 2, 51) (dual of [(425, 2), 773, 52]-NRT-code) | [i] | ||
57 | Linear OOA(6478, 425, F64, 2, 52) (dual of [(425, 2), 772, 53]-NRT-code) | [i] | ||
58 | Linear OOA(6479, 425, F64, 2, 53) (dual of [(425, 2), 771, 54]-NRT-code) | [i] | ||
59 | Linear OOA(6480, 425, F64, 2, 54) (dual of [(425, 2), 770, 55]-NRT-code) | [i] | ||
60 | Linear OOA(6481, 425, F64, 2, 55) (dual of [(425, 2), 769, 56]-NRT-code) | [i] | ||
61 | Linear OOA(6482, 425, F64, 2, 56) (dual of [(425, 2), 768, 57]-NRT-code) | [i] | ||
62 | Linear OOA(6483, 425, F64, 2, 57) (dual of [(425, 2), 767, 58]-NRT-code) | [i] | ||
63 | Linear OOA(6484, 425, F64, 2, 58) (dual of [(425, 2), 766, 59]-NRT-code) | [i] | ||
64 | Linear OOA(6485, 425, F64, 2, 59) (dual of [(425, 2), 765, 60]-NRT-code) | [i] | ||
65 | Linear OOA(6486, 425, F64, 2, 60) (dual of [(425, 2), 764, 61]-NRT-code) | [i] | ||
66 | Linear OOA(6487, 425, F64, 2, 61) (dual of [(425, 2), 763, 62]-NRT-code) | [i] | ||
67 | Linear OOA(6488, 425, F64, 2, 62) (dual of [(425, 2), 762, 63]-NRT-code) | [i] | ||
68 | Linear OOA(6489, 425, F64, 2, 63) (dual of [(425, 2), 761, 64]-NRT-code) | [i] | ||
69 | Linear OOA(6490, 425, F64, 2, 64) (dual of [(425, 2), 760, 65]-NRT-code) | [i] | ||
70 | Linear OOA(6491, 425, F64, 2, 65) (dual of [(425, 2), 759, 66]-NRT-code) | [i] | ||
71 | Linear OOA(6455, 425, F64, 3, 29) (dual of [(425, 3), 1220, 30]-NRT-code) | [i] | ||
72 | Linear OOA(6456, 425, F64, 3, 30) (dual of [(425, 3), 1219, 31]-NRT-code) | [i] | ||
73 | Linear OOA(6457, 425, F64, 3, 31) (dual of [(425, 3), 1218, 32]-NRT-code) | [i] | ||
74 | Linear OOA(6458, 425, F64, 3, 32) (dual of [(425, 3), 1217, 33]-NRT-code) | [i] | ||
75 | Linear OOA(6459, 425, F64, 3, 33) (dual of [(425, 3), 1216, 34]-NRT-code) | [i] | ||
76 | Linear OOA(6460, 425, F64, 3, 34) (dual of [(425, 3), 1215, 35]-NRT-code) | [i] | ||
77 | Linear OOA(6461, 425, F64, 3, 35) (dual of [(425, 3), 1214, 36]-NRT-code) | [i] | ||
78 | Linear OOA(6462, 425, F64, 3, 36) (dual of [(425, 3), 1213, 37]-NRT-code) | [i] | ||
79 | Linear OOA(6463, 425, F64, 3, 37) (dual of [(425, 3), 1212, 38]-NRT-code) | [i] | ||
80 | Linear OOA(6464, 425, F64, 3, 38) (dual of [(425, 3), 1211, 39]-NRT-code) | [i] | ||
81 | Linear OOA(6465, 425, F64, 3, 39) (dual of [(425, 3), 1210, 40]-NRT-code) | [i] | ||
82 | Linear OOA(6466, 425, F64, 3, 40) (dual of [(425, 3), 1209, 41]-NRT-code) | [i] | ||
83 | Linear OOA(6467, 425, F64, 3, 41) (dual of [(425, 3), 1208, 42]-NRT-code) | [i] | ||
84 | Linear OOA(6468, 425, F64, 3, 42) (dual of [(425, 3), 1207, 43]-NRT-code) | [i] | ||
85 | Linear OOA(6469, 425, F64, 3, 43) (dual of [(425, 3), 1206, 44]-NRT-code) | [i] | ||
86 | Linear OOA(6470, 425, F64, 3, 44) (dual of [(425, 3), 1205, 45]-NRT-code) | [i] | ||
87 | Linear OOA(6471, 425, F64, 3, 45) (dual of [(425, 3), 1204, 46]-NRT-code) | [i] | ||
88 | Linear OOA(6472, 425, F64, 3, 46) (dual of [(425, 3), 1203, 47]-NRT-code) | [i] | ||
89 | Linear OOA(6473, 425, F64, 3, 47) (dual of [(425, 3), 1202, 48]-NRT-code) | [i] | ||
90 | Linear OOA(6474, 425, F64, 3, 48) (dual of [(425, 3), 1201, 49]-NRT-code) | [i] | ||
91 | Linear OOA(6475, 425, F64, 3, 49) (dual of [(425, 3), 1200, 50]-NRT-code) | [i] | ||
92 | Linear OOA(6476, 425, F64, 3, 50) (dual of [(425, 3), 1199, 51]-NRT-code) | [i] | ||
93 | Linear OOA(6477, 425, F64, 3, 51) (dual of [(425, 3), 1198, 52]-NRT-code) | [i] | ||
94 | Linear OOA(6478, 425, F64, 3, 52) (dual of [(425, 3), 1197, 53]-NRT-code) | [i] | ||
95 | Linear OOA(6479, 425, F64, 3, 53) (dual of [(425, 3), 1196, 54]-NRT-code) | [i] | ||
96 | Linear OOA(6480, 425, F64, 3, 54) (dual of [(425, 3), 1195, 55]-NRT-code) | [i] | ||
97 | Linear OOA(6481, 425, F64, 3, 55) (dual of [(425, 3), 1194, 56]-NRT-code) | [i] | ||
98 | Linear OOA(6482, 425, F64, 3, 56) (dual of [(425, 3), 1193, 57]-NRT-code) | [i] | ||
99 | Linear OOA(6483, 425, F64, 3, 57) (dual of [(425, 3), 1192, 58]-NRT-code) | [i] | ||
100 | Linear OOA(6484, 425, F64, 3, 58) (dual of [(425, 3), 1191, 59]-NRT-code) | [i] | ||
101 | Linear OOA(6485, 425, F64, 3, 59) (dual of [(425, 3), 1190, 60]-NRT-code) | [i] | ||
102 | Linear OOA(6486, 425, F64, 3, 60) (dual of [(425, 3), 1189, 61]-NRT-code) | [i] | ||
103 | Linear OOA(6487, 425, F64, 3, 61) (dual of [(425, 3), 1188, 62]-NRT-code) | [i] | ||
104 | Linear OOA(6488, 425, F64, 3, 62) (dual of [(425, 3), 1187, 63]-NRT-code) | [i] | ||
105 | Linear OOA(6489, 425, F64, 3, 63) (dual of [(425, 3), 1186, 64]-NRT-code) | [i] | ||
106 | Linear OOA(6490, 425, F64, 3, 64) (dual of [(425, 3), 1185, 65]-NRT-code) | [i] | ||
107 | Linear OOA(6491, 425, F64, 3, 65) (dual of [(425, 3), 1184, 66]-NRT-code) | [i] | ||
108 | Linear OA(6490, 424, F64, 64) (dual of [424, 334, 65]-code) | [i] | Algebraic-Geometric Codes | |
109 | Linear OA(6488, 424, F64, 62) (dual of [424, 336, 63]-code) | [i] | ||
110 | Linear OA(6489, 424, F64, 63) (dual of [424, 335, 64]-code) | [i] | ||
111 | Linear OA(6487, 424, F64, 61) (dual of [424, 337, 62]-code) | [i] | ||
112 | Linear OA(6486, 424, F64, 60) (dual of [424, 338, 61]-code) | [i] | ||
113 | Linear OA(6485, 424, F64, 59) (dual of [424, 339, 60]-code) | [i] | ||
114 | Linear OA(6484, 424, F64, 58) (dual of [424, 340, 59]-code) | [i] | ||
115 | Linear OA(6483, 424, F64, 57) (dual of [424, 341, 58]-code) | [i] | ||
116 | Linear OA(6482, 424, F64, 56) (dual of [424, 342, 57]-code) | [i] | ||
117 | Linear OA(6481, 424, F64, 55) (dual of [424, 343, 56]-code) | [i] | ||
118 | Linear OA(6480, 424, F64, 54) (dual of [424, 344, 55]-code) | [i] | ||
119 | Linear OA(6479, 424, F64, 53) (dual of [424, 345, 54]-code) | [i] | ||
120 | Linear OA(6478, 424, F64, 52) (dual of [424, 346, 53]-code) | [i] | ||
121 | Linear OA(6477, 424, F64, 51) (dual of [424, 347, 52]-code) | [i] | ||
122 | Linear OA(6476, 424, F64, 50) (dual of [424, 348, 51]-code) | [i] | ||
123 | Linear OA(6475, 424, F64, 49) (dual of [424, 349, 50]-code) | [i] | ||
124 | Linear OA(6474, 424, F64, 48) (dual of [424, 350, 49]-code) | [i] | ||
125 | Linear OA(6473, 424, F64, 47) (dual of [424, 351, 48]-code) | [i] | ||
126 | Linear OA(6472, 424, F64, 46) (dual of [424, 352, 47]-code) | [i] | ||
127 | Linear OA(6471, 424, F64, 45) (dual of [424, 353, 46]-code) | [i] | ||
128 | Linear OA(6470, 424, F64, 44) (dual of [424, 354, 45]-code) | [i] | ||
129 | Linear OA(6469, 424, F64, 43) (dual of [424, 355, 44]-code) | [i] | ||
130 | Linear OA(6468, 424, F64, 42) (dual of [424, 356, 43]-code) | [i] | ||
131 | Linear OA(6467, 424, F64, 41) (dual of [424, 357, 42]-code) | [i] | ||
132 | Linear OA(6466, 424, F64, 40) (dual of [424, 358, 41]-code) | [i] | ||
133 | Linear OA(6465, 424, F64, 39) (dual of [424, 359, 40]-code) | [i] | ||
134 | Linear OA(6464, 424, F64, 38) (dual of [424, 360, 39]-code) | [i] | ||
135 | Linear OA(6463, 424, F64, 37) (dual of [424, 361, 38]-code) | [i] | ||
136 | Linear OA(6462, 424, F64, 36) (dual of [424, 362, 37]-code) | [i] | ||
137 | Linear OA(6461, 424, F64, 35) (dual of [424, 363, 36]-code) | [i] | ||
138 | Linear OA(6460, 424, F64, 34) (dual of [424, 364, 35]-code) | [i] |