Information on Result #603533
Linear OA(273, 3, F27, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,27) or 3-cap in PG(2,27)), using complete OA / dual of code with only one code word
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | Generalized (u, u+v)-Construction | |
2 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
3 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
4 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
5 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
6 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
7 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
8 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
9 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
10 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
11 | Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) | [i] | ||
12 | Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) | [i] | ||
13 | Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) | [i] | ||
14 | Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) | [i] | ||
15 | Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) | [i] | ||
16 | Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) | [i] | ||
17 | Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) | [i] | ||
18 | Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) | [i] | ||
19 | Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) | [i] | ||
20 | Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) | [i] | ||
21 | Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) | [i] | ||
22 | Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) | [i] | ||
23 | Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) | [i] | ||
24 | Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) | [i] | ||
25 | Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) | [i] | ||
26 | Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) | [i] | ||
27 | Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) | [i] | ||
28 | Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) | [i] | ||
29 | Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) | [i] | ||
30 | Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) | [i] | ||
31 | Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) | [i] | ||
32 | Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) | [i] | ||
33 | Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) | [i] | ||
34 | Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) | [i] | ||
35 | Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) | [i] | ||
36 | Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) | [i] | ||
37 | Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) | [i] | ||
38 | Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) | [i] | ||
39 | Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) | [i] | ||
40 | Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) | [i] | ||
41 | Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) | [i] | ||
42 | Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) | [i] | ||
43 | Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) | [i] | ||
44 | Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) | [i] | ||
45 | Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) | [i] | ||
46 | Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) | [i] | ||
47 | Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) | [i] | ||
48 | Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) | [i] | ||
49 | Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) | [i] | ||
50 | Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) | [i] | ||
51 | Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) | [i] | ||
52 | Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) | [i] | ||
53 | Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) | [i] | ||
54 | Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) | [i] | ||
55 | Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) | [i] | ||
56 | Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) | [i] | ||
57 | Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) | [i] | ||
58 | Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) | [i] | ||
59 | Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) | [i] | ||
60 | Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) | [i] | ||
61 | Linear OA(2760, 19698, F27, 16) (dual of [19698, 19638, 17]-code) | [i] | ||
62 | Linear OA(2760, 19698, F27, 16) (dual of [19698, 19638, 17]-code) | [i] | ||
63 | Linear OA(2760, 19698, F27, 16) (dual of [19698, 19638, 17]-code) | [i] | ||
64 | Linear OA(2760, 19698, F27, 16) (dual of [19698, 19638, 17]-code) | [i] | ||
65 | Linear OA(2775, 531456, F27, 16) (dual of [531456, 531381, 17]-code) | [i] | ||
66 | Linear OA(2775, 531456, F27, 16) (dual of [531456, 531381, 17]-code) | [i] | ||
67 | Linear OA(2775, 531456, F27, 16) (dual of [531456, 531381, 17]-code) | [i] | ||
68 | Linear OA(2775, 531456, F27, 16) (dual of [531456, 531381, 17]-code) | [i] | ||
69 | Linear OA(2738, 741, F27, 14) (dual of [741, 703, 15]-code) | [i] | ||
70 | Linear OA(2738, 741, F27, 14) (dual of [741, 703, 15]-code) | [i] | ||
71 | Linear OA(2738, 741, F27, 14) (dual of [741, 703, 15]-code) | [i] | ||
72 | Linear OA(2751, 19695, F27, 14) (dual of [19695, 19644, 15]-code) | [i] | ||
73 | Linear OA(2751, 19695, F27, 14) (dual of [19695, 19644, 15]-code) | [i] | ||
74 | Linear OA(2751, 19695, F27, 14) (dual of [19695, 19644, 15]-code) | [i] | ||
75 | Linear OA(2764, 531453, F27, 14) (dual of [531453, 531389, 15]-code) | [i] | ||
76 | Linear OA(2764, 531453, F27, 14) (dual of [531453, 531389, 15]-code) | [i] | ||
77 | Linear OA(2764, 531453, F27, 14) (dual of [531453, 531389, 15]-code) | [i] | ||
78 | Linear OA(2736, 19692, F27, 10) (dual of [19692, 19656, 11]-code) | [i] | ||
79 | Linear OA(2736, 19692, F27, 10) (dual of [19692, 19656, 11]-code) | [i] | ||
80 | Linear OA(2745, 531450, F27, 10) (dual of [531450, 531405, 11]-code) | [i] | ||
81 | Linear OA(2745, 531450, F27, 10) (dual of [531450, 531405, 11]-code) | [i] | ||
82 | Linear OA(2727, 19689, F27, 8) (dual of [19689, 19662, 9]-code) | [i] | (u, u−v, u+v+w)-Construction | |
83 | Linear OA(2734, 531447, F27, 8) (dual of [531447, 531413, 9]-code) | [i] |