Information on Result #603533

Linear OA(273, 3, F27, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,27) or 3-cap in PG(2,27)), using complete OA / dual of code with only one code word

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]Generalized (u, u+v)-Construction
2Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
3Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
4Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
5Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
6Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
7Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
8Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
9Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
10Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
11Linear OA(27107, 765, F27, 38) (dual of [765, 658, 39]-code) [i]
12Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) [i]
13Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) [i]
14Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) [i]
15Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) [i]
16Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) [i]
17Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) [i]
18Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) [i]
19Linear OA(27108, 19710, F27, 29) (dual of [19710, 19602, 30]-code) [i]
20Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) [i]
21Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) [i]
22Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) [i]
23Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) [i]
24Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) [i]
25Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) [i]
26Linear OA(2774, 753, F27, 26) (dual of [753, 679, 27]-code) [i]
27Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) [i]
28Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) [i]
29Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) [i]
30Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) [i]
31Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) [i]
32Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) [i]
33Linear OA(2799, 19707, F27, 26) (dual of [19707, 19608, 27]-code) [i]
34Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) [i]
35Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) [i]
36Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) [i]
37Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) [i]
38Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) [i]
39Linear OA(2784, 19704, F27, 22) (dual of [19704, 19620, 23]-code) [i]
40Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) [i]
41Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) [i]
42Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) [i]
43Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) [i]
44Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) [i]
45Linear OA(27105, 531462, F27, 22) (dual of [531462, 531357, 23]-code) [i]
46Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) [i]
47Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) [i]
48Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) [i]
49Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) [i]
50Linear OA(2756, 747, F27, 20) (dual of [747, 691, 21]-code) [i]
51Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) [i]
52Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) [i]
53Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) [i]
54Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) [i]
55Linear OA(2775, 19701, F27, 20) (dual of [19701, 19626, 21]-code) [i]
56Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) [i]
57Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) [i]
58Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) [i]
59Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) [i]
60Linear OA(2794, 531459, F27, 20) (dual of [531459, 531365, 21]-code) [i]
61Linear OA(2760, 19698, F27, 16) (dual of [19698, 19638, 17]-code) [i]
62Linear OA(2760, 19698, F27, 16) (dual of [19698, 19638, 17]-code) [i]
63Linear OA(2760, 19698, F27, 16) (dual of [19698, 19638, 17]-code) [i]
64Linear OA(2760, 19698, F27, 16) (dual of [19698, 19638, 17]-code) [i]
65Linear OA(2775, 531456, F27, 16) (dual of [531456, 531381, 17]-code) [i]
66Linear OA(2775, 531456, F27, 16) (dual of [531456, 531381, 17]-code) [i]
67Linear OA(2775, 531456, F27, 16) (dual of [531456, 531381, 17]-code) [i]
68Linear OA(2775, 531456, F27, 16) (dual of [531456, 531381, 17]-code) [i]
69Linear OA(2738, 741, F27, 14) (dual of [741, 703, 15]-code) [i]
70Linear OA(2738, 741, F27, 14) (dual of [741, 703, 15]-code) [i]
71Linear OA(2738, 741, F27, 14) (dual of [741, 703, 15]-code) [i]
72Linear OA(2751, 19695, F27, 14) (dual of [19695, 19644, 15]-code) [i]
73Linear OA(2751, 19695, F27, 14) (dual of [19695, 19644, 15]-code) [i]
74Linear OA(2751, 19695, F27, 14) (dual of [19695, 19644, 15]-code) [i]
75Linear OA(2764, 531453, F27, 14) (dual of [531453, 531389, 15]-code) [i]
76Linear OA(2764, 531453, F27, 14) (dual of [531453, 531389, 15]-code) [i]
77Linear OA(2764, 531453, F27, 14) (dual of [531453, 531389, 15]-code) [i]
78Linear OA(2736, 19692, F27, 10) (dual of [19692, 19656, 11]-code) [i]
79Linear OA(2736, 19692, F27, 10) (dual of [19692, 19656, 11]-code) [i]
80Linear OA(2745, 531450, F27, 10) (dual of [531450, 531405, 11]-code) [i]
81Linear OA(2745, 531450, F27, 10) (dual of [531450, 531405, 11]-code) [i]
82Linear OA(2727, 19689, F27, 8) (dual of [19689, 19662, 9]-code) [i](u, u−v, u+v+w)-Construction
83Linear OA(2734, 531447, F27, 8) (dual of [531447, 531413, 9]-code) [i]