Information on Result #603536
Linear OA(276, 6, F27, 6) (dual of [6, 0, 7]-code or 6-arc in PG(5,27)), using complete OA / dual of code with only one code word
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2777, 753, F27, 29) (dual of [753, 676, 30]-code) | [i] | Generalized (u, u+v)-Construction | |
2 | Linear OA(2777, 753, F27, 29) (dual of [753, 676, 30]-code) | [i] | ||
3 | Linear OA(2777, 753, F27, 29) (dual of [753, 676, 30]-code) | [i] | ||
4 | Linear OA(27105, 19707, F27, 29) (dual of [19707, 19602, 30]-code) | [i] | ||
5 | Linear OA(27105, 19707, F27, 29) (dual of [19707, 19602, 30]-code) | [i] | ||
6 | Linear OA(27105, 19707, F27, 29) (dual of [19707, 19602, 30]-code) | [i] | ||
7 | Linear OA(2776, 753, F27, 28) (dual of [753, 677, 29]-code) | [i] | ||
8 | Linear OA(2776, 753, F27, 28) (dual of [753, 677, 29]-code) | [i] | ||
9 | Linear OA(2776, 753, F27, 28) (dual of [753, 677, 29]-code) | [i] | ||
10 | Linear OA(27102, 19707, F27, 28) (dual of [19707, 19605, 29]-code) | [i] | ||
11 | Linear OA(27102, 19707, F27, 28) (dual of [19707, 19605, 29]-code) | [i] | ||
12 | Linear OA(27102, 19707, F27, 28) (dual of [19707, 19605, 29]-code) | [i] | ||
13 | Linear OA(2792, 19707, F27, 24) (dual of [19707, 19615, 25]-code) | [i] | ||
14 | Linear OA(2792, 19707, F27, 24) (dual of [19707, 19615, 25]-code) | [i] | ||
15 | Linear OA(2792, 19707, F27, 24) (dual of [19707, 19615, 25]-code) | [i] | ||
16 | Linear OA(2788, 19708, F27, 23) (dual of [19708, 19620, 24]-code) | [i] | ||
17 | Linear OA(2788, 19708, F27, 23) (dual of [19708, 19620, 24]-code) | [i] | ||
18 | Linear OA(27110, 531466, F27, 23) (dual of [531466, 531356, 24]-code) | [i] | ||
19 | Linear OA(27110, 531466, F27, 23) (dual of [531466, 531356, 24]-code) | [i] | ||
20 | Linear OA(2760, 747, F27, 22) (dual of [747, 687, 23]-code) | [i] | ||
21 | Linear OA(2760, 747, F27, 22) (dual of [747, 687, 23]-code) | [i] | ||
22 | Linear OA(2781, 19701, F27, 22) (dual of [19701, 19620, 23]-code) | [i] | ||
23 | Linear OA(2781, 19701, F27, 22) (dual of [19701, 19620, 23]-code) | [i] | ||
24 | Linear OA(27102, 531459, F27, 22) (dual of [531459, 531357, 23]-code) | [i] | ||
25 | Linear OA(27102, 531459, F27, 22) (dual of [531459, 531357, 23]-code) | [i] | ||
26 | Linear OA(2753, 748, F27, 19) (dual of [748, 695, 20]-code) | [i] | ||
27 | Linear OA(2753, 748, F27, 19) (dual of [748, 695, 20]-code) | [i] | ||
28 | Linear OA(2771, 19702, F27, 19) (dual of [19702, 19631, 20]-code) | [i] | ||
29 | Linear OA(2771, 19702, F27, 19) (dual of [19702, 19631, 20]-code) | [i] | ||
30 | Linear OA(2789, 531460, F27, 19) (dual of [531460, 531371, 20]-code) | [i] | ||
31 | Linear OA(2789, 531460, F27, 19) (dual of [531460, 531371, 20]-code) | [i] | ||
32 | Linear OA(2768, 19701, F27, 18) (dual of [19701, 19633, 19]-code) | [i] | ||
33 | Linear OA(2768, 19701, F27, 18) (dual of [19701, 19633, 19]-code) | [i] | ||
34 | Linear OA(2785, 531459, F27, 18) (dual of [531459, 531374, 19]-code) | [i] | ||
35 | Linear OA(2785, 531459, F27, 18) (dual of [531459, 531374, 19]-code) | [i] | ||
36 | Linear OA(2764, 19702, F27, 17) (dual of [19702, 19638, 18]-code) | [i] | ||
37 | Linear OA(2780, 531460, F27, 17) (dual of [531460, 531380, 18]-code) | [i] | ||
38 | Linear OA(2742, 741, F27, 16) (dual of [741, 699, 17]-code) | [i] | (u, u−v, u+v+w)-Construction | |
39 | Linear OA(2757, 19695, F27, 16) (dual of [19695, 19638, 17]-code) | [i] | ||
40 | Linear OA(2772, 531453, F27, 16) (dual of [531453, 531381, 17]-code) | [i] | ||
41 | Linear OA(2737, 741, F27, 14) (dual of [741, 704, 15]-code) | [i] | ||
42 | Linear OA(2750, 19695, F27, 14) (dual of [19695, 19645, 15]-code) | [i] | ||
43 | Linear OA(2763, 531453, F27, 14) (dual of [531453, 531390, 15]-code) | [i] |