Information on Result #606573
Linear OA(818, 81, F81, 8) (dual of [81, 73, 9]-code or 81-arc in PG(7,81)), using Reed–Solomon code RS(73,81)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(392, 60, F3, 2, 44) (dual of [(60, 2), 28, 45]-NRT-code) | [i] | Concatenation of Two NRT-Codes | |
2 | Linear OA(8182, 386, F81, 58) (dual of [386, 304, 59]-code) | [i] | Construction X with Algebraic-Geometric Codes | |
3 | Linear OA(8181, 386, F81, 57) (dual of [386, 305, 58]-code) | [i] | ||
4 | Linear OA(8180, 386, F81, 56) (dual of [386, 306, 57]-code) | [i] | ||
5 | Linear OA(8179, 386, F81, 55) (dual of [386, 307, 56]-code) | [i] | ||
6 | Linear OA(8178, 386, F81, 54) (dual of [386, 308, 55]-code) | [i] | ||
7 | Linear OA(8177, 386, F81, 53) (dual of [386, 309, 54]-code) | [i] | ||
8 | Linear OA(8176, 386, F81, 52) (dual of [386, 310, 53]-code) | [i] | ||
9 | Linear OA(8175, 386, F81, 51) (dual of [386, 311, 52]-code) | [i] | ||
10 | Linear OA(8174, 386, F81, 50) (dual of [386, 312, 51]-code) | [i] | ||
11 | Linear OA(8173, 386, F81, 49) (dual of [386, 313, 50]-code) | [i] | ||
12 | Linear OA(8172, 386, F81, 48) (dual of [386, 314, 49]-code) | [i] | ||
13 | Linear OA(8171, 386, F81, 47) (dual of [386, 315, 48]-code) | [i] | ||
14 | Linear OA(8170, 386, F81, 46) (dual of [386, 316, 47]-code) | [i] | ||
15 | Linear OA(8169, 386, F81, 45) (dual of [386, 317, 46]-code) | [i] | ||
16 | Linear OA(8168, 386, F81, 44) (dual of [386, 318, 45]-code) | [i] | ||
17 | Linear OA(8167, 386, F81, 43) (dual of [386, 319, 44]-code) | [i] | ||
18 | Linear OA(8166, 386, F81, 42) (dual of [386, 320, 43]-code) | [i] | ||
19 | Linear OA(8165, 386, F81, 41) (dual of [386, 321, 42]-code) | [i] | ||
20 | Linear OA(8164, 386, F81, 40) (dual of [386, 322, 41]-code) | [i] | ||
21 | Linear OA(8163, 386, F81, 39) (dual of [386, 323, 40]-code) | [i] | ||
22 | Linear OA(8162, 386, F81, 38) (dual of [386, 324, 39]-code) | [i] | ||
23 | Linear OA(8161, 386, F81, 37) (dual of [386, 325, 38]-code) | [i] | ||
24 | Linear OA(8160, 386, F81, 36) (dual of [386, 326, 37]-code) | [i] | ||
25 | Linear OA(8159, 386, F81, 35) (dual of [386, 327, 36]-code) | [i] | ||
26 | Linear OA(8158, 386, F81, 34) (dual of [386, 328, 35]-code) | [i] | ||
27 | Linear OA(8157, 386, F81, 33) (dual of [386, 329, 34]-code) | [i] | ||
28 | Linear OA(8156, 386, F81, 32) (dual of [386, 330, 33]-code) | [i] | ||
29 | Linear OA(8169, 6581, F81, 26) (dual of [6581, 6512, 27]-code) | [i] | (u, u−v, u+v+w)-Construction | |
30 | Linear OA(8170, 6583, F81, 26) (dual of [6583, 6513, 27]-code) | [i] | ||
31 | Linear OA(8171, 6585, F81, 26) (dual of [6585, 6514, 27]-code) | [i] | ||
32 | Linear OA(8167, 6582, F81, 25) (dual of [6582, 6515, 26]-code) | [i] | ||
33 | Linear OA(8168, 6584, F81, 25) (dual of [6584, 6516, 26]-code) | [i] | ||
34 | Linear OA(8165, 6581, F81, 24) (dual of [6581, 6516, 25]-code) | [i] | ||
35 | Linear OA(8166, 6583, F81, 24) (dual of [6583, 6517, 25]-code) | [i] | ||
36 | Linear OA(8181, 531476, F81, 25) (dual of [531476, 531395, 26]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
37 | Linear OA(8178, 531476, F81, 24) (dual of [531476, 531398, 25]-code) | [i] | ||
38 | Linear OA(8175, 531476, F81, 23) (dual of [531476, 531401, 24]-code) | [i] | ||
39 | Linear OA(8172, 531476, F81, 22) (dual of [531476, 531404, 23]-code) | [i] | ||
40 | Linear OA(8169, 531476, F81, 21) (dual of [531476, 531407, 22]-code) | [i] | ||
41 | Linear OA(8166, 531476, F81, 20) (dual of [531476, 531410, 21]-code) | [i] | ||
42 | Linear OA(8163, 531476, F81, 19) (dual of [531476, 531413, 20]-code) | [i] | ||
43 | Linear OA(8160, 531476, F81, 18) (dual of [531476, 531416, 19]-code) | [i] | ||
44 | Linear OA(8181, 6587, F81, 37) (dual of [6587, 6506, 38]-code) | [i] | ||
45 | Linear OA(8179, 6587, F81, 36) (dual of [6587, 6508, 37]-code) | [i] | ||
46 | Linear OA(8177, 6587, F81, 35) (dual of [6587, 6510, 36]-code) | [i] | ||
47 | Linear OA(8175, 6587, F81, 34) (dual of [6587, 6512, 35]-code) | [i] | ||
48 | Linear OA(8173, 6587, F81, 33) (dual of [6587, 6514, 34]-code) | [i] | ||
49 | Linear OA(8171, 6587, F81, 32) (dual of [6587, 6516, 33]-code) | [i] | ||
50 | Linear OA(8169, 6587, F81, 31) (dual of [6587, 6518, 32]-code) | [i] | ||
51 | Linear OA(8167, 6587, F81, 30) (dual of [6587, 6520, 31]-code) | [i] | ||
52 | Linear OA(8165, 6587, F81, 29) (dual of [6587, 6522, 30]-code) | [i] | ||
53 | Linear OA(8163, 6587, F81, 28) (dual of [6587, 6524, 29]-code) | [i] | ||
54 | Linear OA(8161, 6587, F81, 27) (dual of [6587, 6526, 28]-code) | [i] | ||
55 | Linear OA(8159, 6587, F81, 26) (dual of [6587, 6528, 27]-code) | [i] | ||
56 | Linear OA(8157, 6587, F81, 25) (dual of [6587, 6530, 26]-code) | [i] | ||
57 | Linear OA(8155, 6587, F81, 24) (dual of [6587, 6532, 25]-code) | [i] | ||
58 | Linear OA(8153, 6587, F81, 23) (dual of [6587, 6534, 24]-code) | [i] | ||
59 | Linear OA(8151, 6587, F81, 22) (dual of [6587, 6536, 23]-code) | [i] | ||
60 | Linear OA(8149, 6587, F81, 21) (dual of [6587, 6538, 22]-code) | [i] | ||
61 | Linear OA(8147, 6587, F81, 20) (dual of [6587, 6540, 21]-code) | [i] | ||
62 | Linear OA(8145, 6587, F81, 19) (dual of [6587, 6542, 20]-code) | [i] | ||
63 | Linear OA(8143, 6587, F81, 18) (dual of [6587, 6544, 19]-code) | [i] |