Information on Result #609444

Linear OA(226, 32, F2, 15) (dual of [32, 6, 16]-code), using Reed–Muller code RM(3,5)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(226, 32, F2, 14) (dual of [32, 6, 15]-code) [i]Strength Reduction
2Linear OA(226, 32, F2, 13) (dual of [32, 6, 14]-code) [i]
3Linear OA(227, 33, F2, 15) (dual of [33, 6, 16]-code) [i]Code Embedding in Larger Space
4Linear OA(228, 34, F2, 15) (dual of [34, 6, 16]-code) [i]
5Linear OA(224, 30, F2, 13) (dual of [30, 6, 14]-code) [i]Truncation
6Linear OA(223, 29, F2, 12) (dual of [29, 6, 13]-code) [i]
7Linear OA(2132, 159, F2, 47) (dual of [159, 27, 48]-code) [i]Construction X with De Boer–Brouwer Codes
8Linear OA(2131, 159, F2, 46) (dual of [159, 28, 47]-code) [i]
9Linear OA(2173, 200, F2, 57) (dual of [200, 27, 58]-code) [i]Construction XX with a Chain of De Boer–Brouwer Codes
10Linear OA(2153, 180, F2, 49) (dual of [180, 27, 50]-code) [i]
11Linear OA(2156, 183, F2, 53) (dual of [183, 27, 54]-code) [i]
12Linear OA(2151, 178, F2, 51) (dual of [178, 27, 52]-code) [i]
13Linear OA(2146, 173, F2, 49) (dual of [173, 27, 50]-code) [i]
14Linear OA(2172, 200, F2, 56) (dual of [200, 28, 57]-code) [i]
15Linear OA(2155, 183, F2, 52) (dual of [183, 28, 53]-code) [i]
16Linear OA(2150, 178, F2, 50) (dual of [178, 28, 51]-code) [i]
17Linear OA(2145, 173, F2, 48) (dual of [173, 28, 49]-code) [i]
18Linear OA(2236, 289, F2, 80) (dual of [289, 53, 81]-code) [i]Construction X with VarÅ¡amov Bound
19Linear OA(2256, 309, F2, 88) (dual of [309, 53, 89]-code) [i]
20Linear OOA(226, 16, F2, 2, 15) (dual of [(16, 2), 6, 16]-NRT-code) [i]OOA Folding