Information on Result #609871
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(333, 93, F3, 11) (dual of [93, 60, 12]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(342, 255, F3, 11) (dual of [255, 213, 12]-code) | [i] | ||
3 | Linear OA(356, 2199, F3, 11) (dual of [2199, 2143, 12]-code) | [i] | ||
4 | Linear OA(370, 19695, F3, 11) (dual of [19695, 19625, 12]-code) | [i] | ||
5 | Linear OA(377, 59061, F3, 11) (dual of [59061, 58984, 12]-code) | [i] | ||
6 | Linear OA(384, 177159, F3, 11) (dual of [177159, 177075, 12]-code) | [i] | ||
7 | Linear OA(391, 531453, F3, 11) (dual of [531453, 531362, 12]-code) | [i] | ||
8 | Linear OA(398, 1594335, F3, 11) (dual of [1594335, 1594237, 12]-code) | [i] | ||
9 | Linear OA(3105, 4782981, F3, 11) (dual of [4782981, 4782876, 12]-code) | [i] | ||
10 | Linear OA(362, 68, F3, 41) (dual of [68, 6, 42]-code) | [i] | Juxtaposition | |
11 | Linear OA(3249, 255, F3, 167) (dual of [255, 6, 168]-code) | [i] | ||
12 | Linear OA(361, 66, F3, 41) (dual of [66, 5, 42]-code) | [i] | ||
13 | Linear OA(387, 92, F3, 59) (dual of [92, 5, 60]-code) | [i] | ||
14 | Linear OA(3123, 128, F3, 83) (dual of [128, 5, 84]-code) | [i] | ||
15 | Linear OA(3127, 132, F3, 86) (dual of [132, 5, 87]-code) | [i] | ||
16 | Linear OA(329, 38, F3, 17) (dual of [38, 9, 18]-code) | [i] | (u, u−v, u+v+w)-Construction | |
17 | Linear OA(310, 36, F3, 5) (dual of [36, 26, 6]-code) | [i] | ||
18 | Linear OA(3223, 742, F3, 57) (dual of [742, 519, 58]-code) | [i] | Construction X with Cyclic Codes | |
19 | Linear OA(3115, 377, F3, 31) (dual of [377, 262, 32]-code) | [i] | ||
20 | Linear OA(380, 92, F3, 47) (dual of [92, 12, 48]-code) | [i] | ||
21 | Linear OA(385, 92, F3, 55) (dual of [92, 7, 56]-code) | [i] | ||
22 | Linear OA(379, 92, F3, 46) (dual of [92, 13, 47]-code) | [i] | ||
23 | Linear OA(3117, 132, F3, 68) (dual of [132, 15, 69]-code) | [i] | ||
24 | Linear OA(384, 91, F3, 55) (dual of [91, 7, 56]-code) | [i] | ||
25 | Linear OA(367, 133, F3, 22) (dual of [133, 66, 23]-code) | [i] | ||
26 | Linear OA(380, 93, F3, 47) (dual of [93, 13, 48]-code) | [i] | Construction XX with Cyclic Codes | |
27 | Linear OA(3118, 134, F3, 68) (dual of [134, 16, 69]-code) | [i] | ||
28 | Linear OA(394, 105, F3, 55) (dual of [105, 11, 56]-code) | [i] | ||
29 | Linear OA(3132, 148, F3, 72) (dual of [148, 16, 73]-code) | [i] | ||
30 | Linear OA(3127, 143, F3, 71) (dual of [143, 16, 72]-code) | [i] | ||
31 | Linear OA(3131, 146, F3, 72) (dual of [146, 15, 73]-code) | [i] | ||
32 | Linear OA(3130, 144, F3, 72) (dual of [144, 14, 73]-code) | [i] | ||
33 | Linear OA(3134, 149, F3, 74) (dual of [149, 15, 75]-code) | [i] | ||
34 | Linear OA(3125, 140, F3, 71) (dual of [140, 15, 72]-code) | [i] | ||
35 | Linear OA(3123, 138, F3, 70) (dual of [138, 15, 71]-code) | [i] | ||
36 | Linear OA(3133, 147, F3, 74) (dual of [147, 14, 75]-code) | [i] | ||
37 | Linear OA(3132, 145, F3, 74) (dual of [145, 13, 75]-code) | [i] | ||
38 | Linear OA(3138, 149, F3, 81) (dual of [149, 11, 82]-code) | [i] | ||
39 | Linear OA(3189, 208, F3, 102) (dual of [208, 19, 103]-code) | [i] | ||
40 | Linear OA(3189, 208, F3, 103) (dual of [208, 19, 104]-code) | [i] | ||
41 | Linear OA(3103, 261, F3, 32) (dual of [261, 158, 33]-code) | [i] | ||
42 | Linear OA(3102, 259, F3, 32) (dual of [259, 157, 33]-code) | [i] | ||
43 | Linear OA(3112, 270, F3, 34) (dual of [270, 158, 35]-code) | [i] | ||
44 | Linear OA(3110, 267, F3, 34) (dual of [267, 157, 35]-code) | [i] | ||
45 | Linear OA(3108, 265, F3, 33) (dual of [265, 157, 34]-code) | [i] | ||
46 | Linear OA(3117, 274, F3, 35) (dual of [274, 157, 36]-code) | [i] | ||
47 | Linear OA(3125, 282, F3, 37) (dual of [282, 157, 38]-code) | [i] | ||
48 | Linear OA(3237, 263, F3, 134) (dual of [263, 26, 135]-code) | [i] | ||
49 | Linear OA(3234, 260, F3, 132) (dual of [260, 26, 133]-code) | [i] | ||
50 | Linear OA(3236, 261, F3, 134) (dual of [261, 25, 135]-code) | [i] | ||
51 | Linear OA(3234, 259, F3, 133) (dual of [259, 25, 134]-code) | [i] | ||
52 | Linear OA(3250, 277, F3, 135) (dual of [277, 27, 136]-code) | [i] | ||
53 | Linear OA(3250, 276, F3, 139) (dual of [276, 26, 140]-code) | [i] | ||
54 | Linear OA(3246, 272, F3, 136) (dual of [272, 26, 137]-code) | [i] | ||
55 | Linear OA(3250, 275, F3, 140) (dual of [275, 25, 141]-code) | [i] | ||
56 | Linear OA(3246, 271, F3, 137) (dual of [271, 25, 138]-code) | [i] | ||
57 | Linear OA(3243, 268, F3, 135) (dual of [268, 25, 136]-code) | [i] | ||
58 | Linear OA(3244, 267, F3, 136) (dual of [267, 23, 137]-code) | [i] | ||
59 | Linear OA(3245, 267, F3, 137) (dual of [267, 22, 138]-code) | [i] | ||
60 | Linear OA(3245, 764, F3, 60) (dual of [764, 519, 61]-code) | [i] | Construction XX with a Chain of Cyclic Codes | |
61 | Linear OA(3242, 761, F3, 59) (dual of [761, 519, 60]-code) | [i] | ||
62 | Linear OA(3246, 764, F3, 61) (dual of [764, 518, 62]-code) | [i] | ||
63 | Linear OA(3244, 762, F3, 60) (dual of [762, 518, 61]-code) | [i] | ||
64 | Linear OA(3241, 759, F3, 59) (dual of [759, 518, 60]-code) | [i] | ||
65 | Linear OA(384, 96, F3, 50) (dual of [96, 12, 51]-code) | [i] | ||
66 | Linear OA(383, 94, F3, 50) (dual of [94, 11, 51]-code) | [i] | ||
67 | Linear OA(389, 96, F3, 58) (dual of [96, 7, 59]-code) | [i] | ||
68 | Linear OA(388, 94, F3, 58) (dual of [94, 6, 59]-code) | [i] | ||
69 | Linear OA(383, 96, F3, 49) (dual of [96, 13, 50]-code) | [i] | ||
70 | Linear OA(382, 94, F3, 49) (dual of [94, 12, 50]-code) | [i] | ||
71 | Linear OA(381, 92, F3, 50) (dual of [92, 11, 51]-code) | [i] | ||
72 | Linear OA(3132, 147, F3, 72) (dual of [147, 15, 73]-code) | [i] | ||
73 | Linear OA(3119, 135, F3, 68) (dual of [135, 16, 69]-code) | [i] | ||
74 | Linear OA(385, 92, F3, 56) (dual of [92, 7, 57]-code) | [i] | ||
75 | Linear OA(3163, 377, F3, 46) (dual of [377, 214, 47]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
76 | Linear OA(3248, 254, F3, 167) (dual of [254, 6, 168]-code) | [i] | ||
77 | Linear OA(3243, 254, F3, 158) (dual of [254, 11, 159]-code) | [i] | ||
78 | Linear OA(3238, 254, F3, 140) (dual of [254, 16, 141]-code) | [i] | ||
79 | Linear OA(3228, 254, F3, 131) (dual of [254, 26, 132]-code) | [i] | ||
80 | Linear OA(3228, 255, F3, 128) (dual of [255, 27, 129]-code) | [i] | ||
81 | Linear OA(3102, 255, F3, 32) (dual of [255, 153, 33]-code) | [i] | ||
82 | Linear OA(397, 255, F3, 31) (dual of [255, 158, 32]-code) | [i] | ||
83 | Linear OA(3176, 195, F3, 98) (dual of [195, 19, 99]-code) | [i] | ||
84 | Linear OA(3156, 172, F3, 86) (dual of [172, 16, 87]-code) | [i] | ||
85 | Linear OA(3117, 133, F3, 67) (dual of [133, 16, 68]-code) | [i] | ||
86 | Linear OA(386, 93, F3, 56) (dual of [93, 7, 57]-code) | [i] | ||
87 | Linear OA(3241, 258, F3, 140) (dual of [258, 17, 141]-code) | [i] | Construction XX with a Chain of Extended Narrow-Sense BCH Codes | |
88 | Linear OA(3250, 276, F3, 136) (dual of [276, 26, 137]-code) | [i] | ||
89 | Linear OA(3248, 274, F3, 135) (dual of [274, 26, 136]-code) | [i] | ||
90 | Linear OA(3247, 274, F3, 134) (dual of [274, 27, 135]-code) | [i] | ||
91 | Linear OA(3244, 271, F3, 132) (dual of [271, 27, 133]-code) | [i] | ||
92 | Linear OA(3231, 258, F3, 131) (dual of [258, 27, 132]-code) | [i] | ||
93 | Linear OA(3124, 282, F3, 35) (dual of [282, 158, 36]-code) | [i] | ||
94 | Linear OA(3117, 275, F3, 34) (dual of [275, 158, 35]-code) | [i] | ||
95 | Linear OA(3114, 272, F3, 33) (dual of [272, 158, 34]-code) | [i] | ||
96 | Linear OA(3158, 174, F3, 88) (dual of [174, 16, 89]-code) | [i] | ||
97 | Linear OA(3135, 151, F3, 73) (dual of [151, 16, 74]-code) | [i] | ||
98 | Linear OA(3132, 148, F3, 71) (dual of [148, 16, 72]-code) | [i] | ||
99 | Linear OA(390, 97, F3, 59) (dual of [97, 7, 60]-code) | [i] | ||
100 | Linear OA(389, 95, F3, 59) (dual of [95, 6, 60]-code) | [i] | ||
101 | Linear OA(384, 97, F3, 50) (dual of [97, 13, 51]-code) | [i] | ||
102 | Linear OA(383, 95, F3, 50) (dual of [95, 12, 51]-code) | [i] | ||
103 | Linear OA(344, 51, F3, 27) (dual of [51, 7, 28]-code) | [i] | Construction X with De Boer–Brouwer Codes | |
104 | Linear OA(3122, 132, F3, 77) (dual of [132, 10, 78]-code) | [i] | ||
105 | Linear OA(3121, 132, F3, 72) (dual of [132, 11, 73]-code) | [i] | ||
106 | Linear OA(3126, 137, F3, 77) (dual of [137, 11, 78]-code) | [i] | Construction XX with De Boer–Brouwer Codes | |
107 | Linear OA(346, 53, F3, 29) (dual of [53, 7, 30]-code) | [i] | Construction XX with a Chain of De Boer–Brouwer Codes | |
108 | Linear OA(345, 56, F3, 23) (dual of [56, 11, 24]-code) | [i] | ||
109 | Linear OA(3127, 138, F3, 77) (dual of [138, 11, 78]-code) | [i] | ||
110 | Linear OA(353, 100, F3, 20) (dual of [100, 47, 21]-code) | [i] | Construction X with Varšamov Bound | |
111 | Linear OA(354, 102, F3, 20) (dual of [102, 48, 21]-code) | [i] | ||
112 | Linear OA(397, 120, F3, 45) (dual of [120, 23, 46]-code) | [i] | ||
113 | Linear OA(3104, 129, F3, 48) (dual of [129, 25, 49]-code) | [i] | ||
114 | Linear OA(3106, 131, F3, 49) (dual of [131, 25, 50]-code) | [i] | ||
115 | Linear OA(3108, 133, F3, 50) (dual of [133, 25, 51]-code) | [i] | ||
116 | Linear OA(3110, 135, F3, 51) (dual of [135, 25, 52]-code) | [i] | ||
117 | Linear OA(3129, 152, F3, 62) (dual of [152, 23, 63]-code) | [i] | ||
118 | Linear OA(3131, 154, F3, 63) (dual of [154, 23, 64]-code) | [i] | ||
119 | Linear OA(3140, 165, F3, 67) (dual of [165, 25, 68]-code) | [i] | ||
120 | Linear OA(3191, 228, F3, 89) (dual of [228, 37, 90]-code) | [i] | ||
121 | Linear OA(3193, 230, F3, 90) (dual of [230, 37, 91]-code) | [i] | ||
122 | Linear OA(3195, 232, F3, 91) (dual of [232, 37, 92]-code) | [i] | ||
123 | Linear OA(3207, 245, F3, 97) (dual of [245, 38, 98]-code) | [i] | ||
124 | Linear OA(3209, 247, F3, 98) (dual of [247, 38, 99]-code) | [i] | ||
125 | Linear OA(3248, 288, F3, 118) (dual of [288, 40, 119]-code) | [i] | ||
126 | Linear OA(358, 111, F3, 22) (dual of [111, 53, 23]-code) | [i] | ||
127 | Linear OA(359, 113, F3, 22) (dual of [113, 54, 23]-code) | [i] | ||
128 | Linear OA(360, 113, F3, 23) (dual of [113, 53, 24]-code) | [i] | ||
129 | Linear OA(361, 115, F3, 23) (dual of [115, 54, 24]-code) | [i] | ||
130 | Linear OA(363, 122, F3, 24) (dual of [122, 59, 25]-code) | [i] | ||
131 | Linear OA(365, 125, F3, 24) (dual of [125, 60, 25]-code) | [i] | ||
132 | Linear OA(366, 125, F3, 25) (dual of [125, 59, 26]-code) | [i] | ||
133 | Linear OA(367, 127, F3, 25) (dual of [127, 60, 26]-code) | [i] | ||
134 | Linear OA(368, 127, F3, 26) (dual of [127, 59, 27]-code) | [i] | ||
135 | Linear OA(393, 139, F3, 38) (dual of [139, 46, 39]-code) | [i] | ||
136 | Linear OA(394, 141, F3, 38) (dual of [141, 47, 39]-code) | [i] | ||
137 | Linear OA(3166, 203, F3, 76) (dual of [203, 37, 77]-code) | [i] | ||
138 | Linear OA(3168, 205, F3, 77) (dual of [205, 37, 78]-code) | [i] | ||
139 | Linear OA(3170, 207, F3, 78) (dual of [207, 37, 79]-code) | [i] | ||
140 | Linear OOA(36, 6, F3, 2, 5) (dual of [(6, 2), 6, 6]-NRT-code) | [i] | OOA Folding |