Information on Result #610047

Linear OA(2179, 182, F2, 103) (dual of [182, 3, 104]-code), using repeating each code word 26 times based on linear OA(24, 7, F2, 3) (dual of [7, 3, 4]-code or 7-cap in PG(3,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2179, 182, F2, 102) (dual of [182, 3, 103]-code) [i]Strength Reduction
2Linear OA(2179, 182, F2, 101) (dual of [182, 3, 102]-code) [i]
3Linear OA(2179, 182, F2, 100) (dual of [182, 3, 101]-code) [i]
4Linear OA(2179, 182, F2, 99) (dual of [182, 3, 100]-code) [i]
5Linear OA(2179, 182, F2, 98) (dual of [182, 3, 99]-code) [i]
6Linear OA(2179, 182, F2, 97) (dual of [182, 3, 98]-code) [i]
7Linear OA(2179, 182, F2, 96) (dual of [182, 3, 97]-code) [i]
8Linear OA(2180, 183, F2, 103) (dual of [183, 3, 104]-code) [i]Code Embedding in Larger Space
9Linear OA(2178, 181, F2, 102) (dual of [181, 3, 103]-code) [i]Truncation
10Linear OA(2177, 180, F2, 101) (dual of [180, 3, 102]-code) [i]
11Linear OA(2175, 178, F2, 99) (dual of [178, 3, 100]-code) [i]
12Linear OA(2174, 177, F2, 98) (dual of [177, 3, 99]-code) [i]
13Linear OA(2173, 176, F2, 97) (dual of [176, 3, 98]-code) [i]
14Linear OA(2171, 174, F2, 95) (dual of [174, 3, 96]-code) [i]
15Linear OA(2170, 173, F2, 94) (dual of [173, 3, 95]-code) [i]
16Linear OA(2168, 171, F2, 92) (dual of [171, 3, 93]-code) [i]
17Linear OA(2167, 170, F2, 91) (dual of [170, 3, 92]-code) [i]
18Linear OA(2166, 169, F2, 90) (dual of [169, 3, 91]-code) [i]
19Linear OA(2164, 167, F2, 88) (dual of [167, 3, 89]-code) [i]
20Linear OOA(2179, 91, F2, 2, 103) (dual of [(91, 2), 3, 104]-NRT-code) [i]OOA Folding
21Linear OOA(2179, 26, F2, 7, 103) (dual of [(26, 7), 3, 104]-NRT-code) [i]