Information on Result #611201
Linear OA(2210, 524288, F2, 23) (dual of [524288, 524078, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 524287 = 219−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2209, 524287, F2, 22) (dual of [524287, 524078, 23]-code) | [i] | Truncation | |
2 | Linear OA(2230, 524308, F2, 25) (dual of [524308, 524078, 26]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
3 | Linear OA(2211, 524308, F2, 23) (dual of [524308, 524097, 24]-code) | [i] | ✔ | |
4 | Linear OA(2254, 524320, F2, 27) (dual of [524320, 524066, 28]-code) | [i] | ✔ | |
5 | Linear OA(2255, 524333, F2, 27) (dual of [524333, 524078, 28]-code) | [i] | ✔ | |
6 | Linear OA(2216, 524320, F2, 23) (dual of [524320, 524104, 24]-code) | [i] | ✔ | |
7 | Linear OA(2217, 524333, F2, 23) (dual of [524333, 524116, 24]-code) | [i] | ✔ | |
8 | Linear OOA(2210, 262144, F2, 2, 23) (dual of [(262144, 2), 524078, 24]-NRT-code) | [i] | OOA Folding | |
9 | Linear OOA(2210, 174762, F2, 3, 23) (dual of [(174762, 3), 524076, 24]-NRT-code) | [i] | ||
10 | Linear OOA(2210, 131072, F2, 4, 23) (dual of [(131072, 4), 524078, 24]-NRT-code) | [i] | ||
11 | Linear OOA(2210, 104857, F2, 5, 23) (dual of [(104857, 5), 524075, 24]-NRT-code) | [i] | ||
12 | Linear OOA(2210, 87381, F2, 6, 23) (dual of [(87381, 6), 524076, 24]-NRT-code) | [i] | ||
13 | Linear OOA(2210, 74898, F2, 7, 23) (dual of [(74898, 7), 524076, 24]-NRT-code) | [i] | ||
14 | Linear OOA(2210, 65536, F2, 8, 23) (dual of [(65536, 8), 524078, 24]-NRT-code) | [i] | ||
15 | Linear OOA(2210, 47662, F2, 23, 23) (dual of [(47662, 23), 1096016, 24]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |