Information on Result #611409

Linear OA(299, 128, F2, 43) (dual of [128, 29, 44]-code), using an extension Ce(42) of the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(299, 128, F2, 42) (dual of [128, 29, 43]-code) [i]Strength Reduction
2Linear OA(299, 128, F2, 41) (dual of [128, 29, 42]-code) [i]
3Linear OA(299, 128, F2, 40) (dual of [128, 29, 41]-code) [i]
4Linear OA(299, 128, F2, 39) (dual of [128, 29, 40]-code) [i]
5Linear OA(299, 128, F2, 38) (dual of [128, 29, 39]-code) [i]
6Linear OA(2100, 129, F2, 43) (dual of [129, 29, 44]-code) [i]Code Embedding in Larger Space
7Linear OA(2101, 130, F2, 43) (dual of [130, 29, 44]-code) [i]
8Linear OA(2102, 131, F2, 43) (dual of [131, 29, 44]-code) [i]
9Linear OA(2103, 132, F2, 43) (dual of [132, 29, 44]-code) [i]
10Linear OA(2104, 133, F2, 43) (dual of [133, 29, 44]-code) [i]
11Linear OA(297, 126, F2, 41) (dual of [126, 29, 42]-code) [i]Truncation
12Linear OA(296, 125, F2, 40) (dual of [125, 29, 41]-code) [i]
13Linear OA(295, 124, F2, 39) (dual of [124, 29, 40]-code) [i]
14Linear OA(294, 123, F2, 38) (dual of [123, 29, 39]-code) [i]
15Linear OA(293, 122, F2, 37) (dual of [122, 29, 38]-code) [i]
16Linear OA(292, 121, F2, 36) (dual of [121, 29, 37]-code) [i]
17Linear OA(291, 120, F2, 35) (dual of [120, 29, 36]-code) [i]
18Linear OA(290, 119, F2, 34) (dual of [119, 29, 35]-code) [i]
19Linear OA(289, 118, F2, 33) (dual of [118, 29, 34]-code) [i]
20Linear OA(288, 117, F2, 32) (dual of [117, 29, 33]-code) [i]
21Linear OA(256, 84, F2, 21) (dual of [84, 28, 22]-code) [i]Residual Code
22Linear OA(2107, 136, F2, 45) (dual of [136, 29, 46]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
23Linear OA(2109, 132, F2, 47) (dual of [132, 23, 48]-code) [i]
24Linear OA(2110, 136, F2, 47) (dual of [136, 26, 48]-code) [i]
25Linear OA(2111, 140, F2, 47) (dual of [140, 29, 48]-code) [i]
26Linear OA(2110, 140, F2, 43) (dual of [140, 30, 44]-code) [i]
27Linear OA(2115, 146, F2, 43) (dual of [146, 31, 44]-code) [i]
28Linear OA(2117, 149, F2, 43) (dual of [149, 32, 44]-code) [i]
29Linear OA(2118, 152, F2, 43) (dual of [152, 34, 44]-code) [i]
30Linear OA(2119, 155, F2, 43) (dual of [155, 36, 44]-code) [i]
31Linear OA(2112, 143, F2, 41) (dual of [143, 31, 42]-code) [i]
32Linear OA(2114, 146, F2, 41) (dual of [146, 32, 42]-code) [i]
33Linear OA(2115, 149, F2, 41) (dual of [149, 34, 42]-code) [i]
34Linear OA(2116, 151, F2, 41) (dual of [151, 35, 42]-code) [i]
35Linear OA(2110, 144, F2, 39) (dual of [144, 34, 40]-code) [i]
36Linear OA(2111, 147, F2, 39) (dual of [147, 36, 40]-code) [i]
37Linear OA(2107, 140, F2, 37) (dual of [140, 33, 38]-code) [i]
38Linear OA(2108, 144, F2, 37) (dual of [144, 36, 38]-code) [i]
39Linear OA(2134, 160, F2, 55) (dual of [160, 26, 56]-code) [i]
40Linear OA(2137, 166, F2, 55) (dual of [166, 29, 56]-code) [i]
41Linear OA(2133, 160, F2, 53) (dual of [160, 27, 54]-code) [i]
42Linear OA(2134, 163, F2, 53) (dual of [163, 29, 54]-code) [i]
43Linear OA(2125, 152, F2, 51) (dual of [152, 27, 52]-code) [i]
44Linear OA(2128, 156, F2, 51) (dual of [156, 28, 52]-code) [i]
45Linear OA(2129, 158, F2, 51) (dual of [158, 29, 52]-code) [i]
46Linear OA(2122, 146, F2, 49) (dual of [146, 24, 50]-code) [i]
47Linear OA(2124, 153, F2, 49) (dual of [153, 29, 50]-code) [i]
48Linear OA(2133, 161, F2, 53) (dual of [161, 28, 54]-code) [i]
49Linear OA(2135, 162, F2, 55) (dual of [162, 27, 56]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
50Linear OA(2131, 158, F2, 53) (dual of [158, 27, 54]-code) [i]
51Linear OA(2133, 159, F2, 55) (dual of [159, 26, 56]-code) [i]
52Linear OA(2130, 156, F2, 53) (dual of [156, 26, 54]-code) [i]
53Linear OA(2122, 148, F2, 49) (dual of [148, 26, 50]-code) [i]
54Linear OA(2132, 157, F2, 55) (dual of [157, 25, 56]-code) [i]
55Linear OA(2129, 154, F2, 53) (dual of [154, 25, 54]-code) [i]
56Linear OA(2121, 146, F2, 49) (dual of [146, 25, 50]-code) [i]
57Linear OA(2131, 155, F2, 55) (dual of [155, 24, 56]-code) [i]
58Linear OA(2128, 152, F2, 53) (dual of [152, 24, 54]-code) [i]
59Linear OA(2124, 148, F2, 51) (dual of [148, 24, 52]-code) [i]
60Linear OA(2120, 144, F2, 49) (dual of [144, 24, 50]-code) [i]
61Linear OA(2129, 152, F2, 55) (dual of [152, 23, 56]-code) [i]
62Linear OA(2126, 149, F2, 53) (dual of [149, 23, 54]-code) [i]
63Linear OA(2122, 145, F2, 51) (dual of [145, 23, 52]-code) [i]
64Linear OA(2118, 141, F2, 49) (dual of [141, 23, 50]-code) [i]
65Linear OA(2125, 156, F2, 45) (dual of [156, 31, 46]-code) [i]
66Linear OA(2123, 153, F2, 47) (dual of [153, 30, 48]-code) [i]
67Linear OA(2119, 149, F2, 45) (dual of [149, 30, 46]-code) [i]
68Linear OA(2123, 161, F2, 43) (dual of [161, 38, 44]-code) [i]
69Linear OA(2114, 152, F2, 39) (dual of [152, 38, 40]-code) [i]
70Linear OA(2122, 159, F2, 43) (dual of [159, 37, 44]-code) [i]
71Linear OA(2113, 150, F2, 39) (dual of [150, 37, 40]-code) [i]
72Linear OOA(299, 64, F2, 2, 43) (dual of [(64, 2), 29, 44]-NRT-code) [i]OOA Folding
73Linear OOA(299, 32, F2, 4, 43) (dual of [(32, 4), 29, 44]-NRT-code) [i]