Information on Result #611418

Linear OA(2149, 256, F2, 45) (dual of [256, 107, 46]-code), using an extension Ce(44) of the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,44], and designed minimum distance d ≥ |I|+1 = 45

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2158, 265, F2, 47) (dual of [265, 107, 48]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
2Linear OA(2150, 265, F2, 45) (dual of [265, 115, 46]-code) [i]
3Linear OA(2174, 274, F2, 51) (dual of [274, 100, 52]-code) [i]
4Linear OA(2175, 278, F2, 51) (dual of [278, 103, 52]-code) [i]
5Linear OA(2176, 283, F2, 51) (dual of [283, 107, 52]-code) [i]
6Linear OA(2170, 272, F2, 49) (dual of [272, 102, 50]-code) [i]
7Linear OA(2171, 278, F2, 49) (dual of [278, 107, 50]-code) [i]
8Linear OA(2158, 274, F2, 45) (dual of [274, 116, 46]-code) [i]
9Linear OA(2159, 278, F2, 45) (dual of [278, 119, 46]-code) [i]
10Linear OA(2160, 283, F2, 45) (dual of [283, 123, 46]-code) [i]
11Linear OA(2184, 284, F2, 53) (dual of [284, 100, 54]-code) [i]
12Linear OA(2185, 288, F2, 53) (dual of [288, 103, 54]-code) [i]
13Linear OA(2186, 293, F2, 53) (dual of [293, 107, 54]-code) [i]
14Linear OA(2166, 296, F2, 45) (dual of [296, 130, 46]-code) [i]
15Linear OA(2167, 298, F2, 45) (dual of [298, 131, 46]-code) [i]
16Linear OA(2185, 292, F2, 53) (dual of [292, 107, 54]-code) [i]
17Linear OA(2184, 288, F2, 53) (dual of [288, 104, 54]-code) [i]
18Linear OA(2184, 286, F2, 53) (dual of [286, 102, 54]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
19Linear OA(2183, 284, F2, 53) (dual of [284, 101, 54]-code) [i]
20Linear OA(2182, 282, F2, 53) (dual of [282, 100, 54]-code) [i]
21Linear OA(2174, 276, F2, 51) (dual of [276, 102, 52]-code) [i]
22Linear OA(2173, 274, F2, 51) (dual of [274, 101, 52]-code) [i]
23Linear OA(2169, 270, F2, 49) (dual of [270, 101, 50]-code) [i]
24Linear OA(2172, 272, F2, 51) (dual of [272, 100, 52]-code) [i]
25Linear OA(2168, 268, F2, 49) (dual of [268, 100, 50]-code) [i]
26Linear OA(2181, 292, F2, 51) (dual of [292, 111, 52]-code) [i]
27Linear OA(2180, 290, F2, 51) (dual of [290, 110, 52]-code) [i]
28Linear OA(2175, 285, F2, 49) (dual of [285, 110, 50]-code) [i]
29Linear OA(2179, 288, F2, 51) (dual of [288, 109, 52]-code) [i]
30Linear OA(2174, 283, F2, 49) (dual of [283, 109, 50]-code) [i]
31Linear OA(2178, 286, F2, 51) (dual of [286, 108, 52]-code) [i]
32Linear OA(2173, 281, F2, 49) (dual of [281, 108, 50]-code) [i]
33Linear OA(2161, 270, F2, 47) (dual of [270, 109, 48]-code) [i]
34Linear OA(2160, 268, F2, 47) (dual of [268, 108, 48]-code) [i]
35Linear OA(2158, 277, F2, 45) (dual of [277, 119, 46]-code) [i]
36Linear OA(2157, 275, F2, 45) (dual of [275, 118, 46]-code) [i]
37Linear OA(2156, 273, F2, 45) (dual of [273, 117, 46]-code) [i]
38Linear OA(2154, 270, F2, 45) (dual of [270, 116, 46]-code) [i]
39Linear OA(2165, 292, F2, 45) (dual of [292, 127, 46]-code) [i]
40Linear OA(2164, 290, F2, 45) (dual of [290, 126, 46]-code) [i]
41Linear OA(2163, 288, F2, 45) (dual of [288, 125, 46]-code) [i]
42Linear OA(2162, 286, F2, 45) (dual of [286, 124, 46]-code) [i]
43Linear OA(2161, 293, F2, 41) (dual of [293, 132, 42]-code) [i]
44Linear OA(2182, 283, F2, 53) (dual of [283, 101, 54]-code) [i]
45Linear OA(2181, 281, F2, 53) (dual of [281, 100, 54]-code) [i]
46Linear OOA(2149, 128, F2, 2, 45) (dual of [(128, 2), 107, 46]-NRT-code) [i]OOA Folding