Information on Result #611423
Linear OA(2157, 256, F2, 47) (dual of [256, 99, 48]-code), using an extension Ce(46) of the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,46], and designed minimum distance d ≥ |I|+1 = 47
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2166, 265, F2, 49) (dual of [265, 99, 50]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
2 | Linear OA(2168, 260, F2, 51) (dual of [260, 92, 52]-code) | [i] | ✔ | |
3 | Linear OA(2169, 264, F2, 51) (dual of [264, 95, 52]-code) | [i] | ✔ | |
4 | Linear OA(2170, 269, F2, 51) (dual of [269, 99, 52]-code) | [i] | ✔ | |
5 | Linear OA(2158, 265, F2, 47) (dual of [265, 107, 48]-code) | [i] | ✔ | |
6 | Linear OA(2178, 274, F2, 53) (dual of [274, 96, 54]-code) | [i] | ✔ | |
7 | Linear OA(2179, 278, F2, 53) (dual of [278, 99, 54]-code) | [i] | ✔ | |
8 | Linear OA(2162, 272, F2, 47) (dual of [272, 110, 48]-code) | [i] | ✔ | |
9 | Linear OA(2163, 278, F2, 47) (dual of [278, 115, 48]-code) | [i] | ✔ | |
10 | Linear OA(2174, 296, F2, 47) (dual of [296, 122, 48]-code) | [i] | ✔ | |
11 | Linear OA(2175, 298, F2, 47) (dual of [298, 123, 48]-code) | [i] | ✔ | |
12 | Linear OA(2187, 279, F2, 55) (dual of [279, 92, 56]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
13 | Linear OA(2177, 271, F2, 53) (dual of [271, 94, 54]-code) | [i] | ✔ | |
14 | Linear OA(2176, 269, F2, 53) (dual of [269, 93, 54]-code) | [i] | ✔ | |
15 | Linear OA(2174, 266, F2, 53) (dual of [266, 92, 54]-code) | [i] | ✔ | |
16 | Linear OA(2184, 286, F2, 53) (dual of [286, 102, 54]-code) | [i] | ✔ | |
17 | Linear OA(2183, 284, F2, 53) (dual of [284, 101, 54]-code) | [i] | ✔ | |
18 | Linear OA(2182, 282, F2, 53) (dual of [282, 100, 54]-code) | [i] | ✔ | |
19 | Linear OA(2174, 276, F2, 51) (dual of [276, 102, 52]-code) | [i] | ✔ | |
20 | Linear OA(2173, 274, F2, 51) (dual of [274, 101, 52]-code) | [i] | ✔ | |
21 | Linear OA(2169, 270, F2, 49) (dual of [270, 101, 50]-code) | [i] | ✔ | |
22 | Linear OA(2172, 272, F2, 51) (dual of [272, 100, 52]-code) | [i] | ✔ | |
23 | Linear OA(2168, 268, F2, 49) (dual of [268, 100, 50]-code) | [i] | ✔ | |
24 | Linear OA(2161, 270, F2, 47) (dual of [270, 109, 48]-code) | [i] | ✔ | |
25 | Linear OA(2160, 268, F2, 47) (dual of [268, 108, 48]-code) | [i] | ✔ | |
26 | Linear OA(2173, 293, F2, 47) (dual of [293, 120, 48]-code) | [i] | ✔ | |
27 | Linear OA(2171, 290, F2, 47) (dual of [290, 119, 48]-code) | [i] | ✔ | |
28 | Linear OA(2170, 288, F2, 47) (dual of [288, 118, 48]-code) | [i] | ✔ | |
29 | Linear OA(2169, 286, F2, 47) (dual of [286, 117, 48]-code) | [i] | ✔ | |
30 | Linear OA(2167, 283, F2, 47) (dual of [283, 116, 48]-code) | [i] | ✔ | |
31 | Linear OA(2182, 283, F2, 53) (dual of [283, 101, 54]-code) | [i] | ✔ | |
32 | Linear OA(2181, 281, F2, 53) (dual of [281, 100, 54]-code) | [i] | ✔ | |
33 | Linear OOA(2157, 128, F2, 2, 47) (dual of [(128, 2), 99, 48]-NRT-code) | [i] | OOA Folding |