Information on Result #611513
Linear OA(2211, 256, F2, 87) (dual of [256, 45, 88]-code), using an extension Ce(86) of the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,86], and designed minimum distance d ≥ |I|+1 = 87
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2124, 168, F2, 43) (dual of [168, 44, 44]-code) | [i] | Residual Code | |
2 | Linear OA(2220, 265, F2, 89) (dual of [265, 45, 90]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
3 | Linear OA(2222, 260, F2, 91) (dual of [260, 38, 92]-code) | [i] | ✔ | |
4 | Linear OA(2223, 264, F2, 91) (dual of [264, 41, 92]-code) | [i] | ✔ | |
5 | Linear OA(2224, 269, F2, 91) (dual of [269, 45, 92]-code) | [i] | ✔ | |
6 | Linear OA(2212, 259, F2, 87) (dual of [259, 47, 88]-code) | [i] | ✔ | |
7 | Linear OA(2239, 280, F2, 95) (dual of [280, 41, 96]-code) | [i] | ✔ | |
8 | Linear OA(2242, 284, F2, 95) (dual of [284, 42, 96]-code) | [i] | ✔ | |
9 | Linear OA(2243, 288, F2, 95) (dual of [288, 45, 96]-code) | [i] | ✔ | |
10 | Linear OA(2236, 274, F2, 93) (dual of [274, 38, 94]-code) | [i] | ✔ | |
11 | Linear OA(2238, 283, F2, 93) (dual of [283, 45, 94]-code) | [i] | ✔ | |
12 | Linear OA(2259, 304, F2, 99) (dual of [304, 45, 100]-code) | [i] | ✔ | |
13 | Linear OA(2256, 298, F2, 97) (dual of [298, 42, 98]-code) | [i] | ✔ | |
14 | Linear OA(2254, 295, F2, 97) (dual of [295, 41, 98]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
15 | Linear OA(2253, 293, F2, 97) (dual of [293, 40, 98]-code) | [i] | ✔ | |
16 | Linear OA(2252, 291, F2, 97) (dual of [291, 39, 98]-code) | [i] | ✔ | |
17 | Linear OA(2260, 298, F2, 101) (dual of [298, 38, 102]-code) | [i] | ✔ | |
18 | Linear OA(2250, 288, F2, 97) (dual of [288, 38, 98]-code) | [i] | ✔ | |
19 | Linear OA(2236, 277, F2, 93) (dual of [277, 41, 94]-code) | [i] | ✔ | |
20 | Linear OA(2235, 275, F2, 93) (dual of [275, 40, 94]-code) | [i] | ✔ | |
21 | Linear OA(2238, 277, F2, 95) (dual of [277, 39, 96]-code) | [i] | ✔ | |
22 | Linear OA(2234, 273, F2, 93) (dual of [273, 39, 94]-code) | [i] | ✔ | |
23 | Linear OA(2236, 274, F2, 95) (dual of [274, 38, 96]-code) | [i] | ✔ | |
24 | Linear OA(2232, 270, F2, 93) (dual of [270, 38, 94]-code) | [i] | ✔ | |
25 | Linear OA(2247, 294, F2, 95) (dual of [294, 47, 96]-code) | [i] | ✔ | |
26 | Linear OA(2241, 288, F2, 93) (dual of [288, 47, 94]-code) | [i] | ✔ | |
27 | Linear OA(2246, 292, F2, 95) (dual of [292, 46, 96]-code) | [i] | ✔ | |
28 | Linear OA(2240, 286, F2, 93) (dual of [286, 46, 94]-code) | [i] | ✔ | |
29 | Linear OA(2227, 274, F2, 91) (dual of [274, 47, 92]-code) | [i] | ✔ | |
30 | Linear OA(2223, 270, F2, 89) (dual of [270, 47, 90]-code) | [i] | ✔ | |
31 | Linear OA(2226, 272, F2, 91) (dual of [272, 46, 92]-code) | [i] | ✔ | |
32 | Linear OA(2222, 268, F2, 89) (dual of [268, 46, 90]-code) | [i] | ✔ | |
33 | Linear OA(2234, 282, F2, 87) (dual of [282, 48, 88]-code) | [i] | ✔ | |
34 | Linear OOA(2211, 128, F2, 2, 87) (dual of [(128, 2), 45, 88]-NRT-code) | [i] | OOA Folding | |
35 | Linear OOA(2211, 64, F2, 4, 87) (dual of [(64, 4), 45, 88]-NRT-code) | [i] |