Information on Result #611527
Linear OA(37, 27, F3, 4) (dual of [27, 20, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 26 = 33−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3152, 391, F3, 39) (dual of [391, 239, 40]-code) | [i] | Construction X with Cyclic Codes | |
2 | Linear OA(3242, 19710, F3, 40) (dual of [19710, 19468, 41]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
3 | Linear OA(3224, 19710, F3, 37) (dual of [19710, 19486, 38]-code) | [i] | ||
4 | Linear OA(3206, 19710, F3, 34) (dual of [19710, 19504, 35]-code) | [i] | ||
5 | Linear OA(3188, 19710, F3, 31) (dual of [19710, 19522, 32]-code) | [i] | ||
6 | Linear OA(3170, 19710, F3, 28) (dual of [19710, 19540, 29]-code) | [i] | ||
7 | Linear OA(3152, 19710, F3, 25) (dual of [19710, 19558, 26]-code) | [i] | ||
8 | Linear OA(3134, 19710, F3, 22) (dual of [19710, 19576, 23]-code) | [i] | ||
9 | Linear OA(3116, 19710, F3, 19) (dual of [19710, 19594, 20]-code) | [i] | ||
10 | Linear OA(398, 19710, F3, 16) (dual of [19710, 19612, 17]-code) | [i] | ||
11 | Linear OA(380, 19710, F3, 13) (dual of [19710, 19630, 14]-code) | [i] | ||
12 | Linear OA(3248, 6588, F3, 46) (dual of [6588, 6340, 47]-code) | [i] | ||
13 | Linear OA(3232, 6588, F3, 43) (dual of [6588, 6356, 44]-code) | [i] | ||
14 | Linear OA(3216, 6588, F3, 40) (dual of [6588, 6372, 41]-code) | [i] | ||
15 | Linear OA(3200, 6588, F3, 37) (dual of [6588, 6388, 38]-code) | [i] | ||
16 | Linear OA(3184, 6588, F3, 34) (dual of [6588, 6404, 35]-code) | [i] | ||
17 | Linear OA(3168, 6588, F3, 31) (dual of [6588, 6420, 32]-code) | [i] | ||
18 | Linear OA(3152, 6588, F3, 28) (dual of [6588, 6436, 29]-code) | [i] | ||
19 | Linear OA(3136, 6588, F3, 25) (dual of [6588, 6452, 26]-code) | [i] | ||
20 | Linear OA(3120, 6588, F3, 22) (dual of [6588, 6468, 23]-code) | [i] | ||
21 | Linear OA(3104, 6588, F3, 19) (dual of [6588, 6484, 20]-code) | [i] | ||
22 | Linear OA(388, 6588, F3, 16) (dual of [6588, 6500, 17]-code) | [i] | ||
23 | Linear OA(3246, 2214, F3, 52) (dual of [2214, 1968, 53]-code) | [i] | ||
24 | Linear OA(3232, 2214, F3, 49) (dual of [2214, 1982, 50]-code) | [i] | ||
25 | Linear OA(3218, 2214, F3, 46) (dual of [2214, 1996, 47]-code) | [i] | ||
26 | Linear OA(3204, 2214, F3, 43) (dual of [2214, 2010, 44]-code) | [i] | ||
27 | Linear OA(3190, 2214, F3, 40) (dual of [2214, 2024, 41]-code) | [i] | ||
28 | Linear OA(3176, 2214, F3, 37) (dual of [2214, 2038, 38]-code) | [i] | ||
29 | Linear OA(3162, 2214, F3, 34) (dual of [2214, 2052, 35]-code) | [i] | ||
30 | Linear OA(3148, 2214, F3, 31) (dual of [2214, 2066, 32]-code) | [i] | ||
31 | Linear OA(3134, 2214, F3, 28) (dual of [2214, 2080, 29]-code) | [i] | ||
32 | Linear OA(3120, 2214, F3, 25) (dual of [2214, 2094, 26]-code) | [i] | ||
33 | Linear OA(3106, 2214, F3, 22) (dual of [2214, 2108, 23]-code) | [i] | ||
34 | Linear OA(392, 2214, F3, 19) (dual of [2214, 2122, 20]-code) | [i] | ||
35 | Linear OA(378, 2214, F3, 16) (dual of [2214, 2136, 17]-code) | [i] | ||
36 | Linear OA(364, 2214, F3, 13) (dual of [2214, 2150, 14]-code) | [i] |