Information on Result #611782

Linear OA(351, 243, F3, 16) (dual of [243, 192, 17]-code), using an extension Ce(15) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(356, 248, F3, 17) (dual of [248, 192, 18]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
2Linear OA(352, 249, F3, 16) (dual of [249, 197, 17]-code) [i]
3Linear OA(362, 254, F3, 18) (dual of [254, 192, 19]-code) [i]
4Linear OA(364, 256, F3, 19) (dual of [256, 192, 20]-code) [i]
5Linear OA(354, 256, F3, 16) (dual of [256, 202, 17]-code) [i]
6Linear OA(371, 263, F3, 20) (dual of [263, 192, 21]-code) [i]
7Linear OA(356, 263, F3, 15) (dual of [263, 207, 16]-code) [i]
8Linear OA(379, 271, F3, 22) (dual of [271, 192, 23]-code) [i]
9Linear OA(387, 275, F3, 23) (dual of [275, 188, 24]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
10Linear OA(363, 251, F3, 19) (dual of [251, 188, 20]-code) [i]
11Linear OA(365, 259, F3, 18) (dual of [259, 194, 19]-code) [i]
12Linear OA(358, 251, F3, 17) (dual of [251, 193, 18]-code) [i]
13Linear OA(353, 251, F3, 16) (dual of [251, 198, 17]-code) [i]
14Linear OA(355, 259, F3, 15) (dual of [259, 204, 16]-code) [i]
15Linear OA(357, 260, F3, 16) (dual of [260, 203, 17]-code) [i]
16Linear OOA(351, 81, F3, 3, 16) (dual of [(81, 3), 192, 17]-NRT-code) [i]OOA Folding