Information on Result #611928

Linear OA(376, 243, F3, 23) (dual of [243, 167, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(387, 255, F3, 23) (dual of [255, 168, 24]-code) [i](u, u+v)-Construction
2Linear OA(382, 249, F3, 25) (dual of [249, 167, 26]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
3Linear OA(376, 248, F3, 23) (dual of [248, 172, 24]-code) [i]
4Linear OA(389, 256, F3, 26) (dual of [256, 167, 27]-code) [i]
5Linear OA(379, 256, F3, 23) (dual of [256, 177, 24]-code) [i]
6Linear OA(3102, 266, F3, 31) (dual of [266, 164, 32]-code) [i]
7Linear OA(3104, 271, F3, 31) (dual of [271, 167, 32]-code) [i]
8Linear OA(399, 266, F3, 29) (dual of [266, 167, 30]-code) [i]
9Linear OA(396, 263, F3, 27) (dual of [263, 167, 28]-code) [i]
10Linear OA(381, 263, F3, 23) (dual of [263, 182, 24]-code) [i]
11Linear OA(3113, 279, F3, 32) (dual of [279, 166, 33]-code) [i]
12Linear OA(3114, 281, F3, 32) (dual of [281, 167, 33]-code) [i]
13Linear OA(384, 271, F3, 23) (dual of [271, 187, 24]-code) [i]
14Linear OA(3102, 269, F3, 30) (dual of [269, 167, 31]-code) [i]
15Linear OA(3119, 283, F3, 33) (dual of [283, 164, 34]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
16Linear OA(3118, 281, F3, 33) (dual of [281, 163, 34]-code) [i]
17Linear OA(3112, 275, F3, 32) (dual of [275, 163, 33]-code) [i]
18Linear OA(3103, 268, F3, 31) (dual of [268, 165, 32]-code) [i]
19Linear OA(395, 259, F3, 27) (dual of [259, 164, 28]-code) [i]
20Linear OA(3101, 264, F3, 31) (dual of [264, 163, 32]-code) [i]
21Linear OA(398, 261, F3, 29) (dual of [261, 163, 30]-code) [i]
22Linear OA(3104, 276, F3, 29) (dual of [276, 172, 30]-code) [i]
23Linear OA(3103, 274, F3, 29) (dual of [274, 171, 30]-code) [i]
24Linear OA(3102, 272, F3, 29) (dual of [272, 170, 30]-code) [i]
25Linear OA(3101, 270, F3, 29) (dual of [270, 169, 30]-code) [i]
26Linear OA(3107, 275, F3, 31) (dual of [275, 168, 32]-code) [i]
27Linear OA(3100, 268, F3, 29) (dual of [268, 168, 30]-code) [i]
28Linear OA(388, 251, F3, 26) (dual of [251, 163, 27]-code) [i]
29Linear OA(383, 251, F3, 25) (dual of [251, 168, 26]-code) [i]
30Linear OA(378, 251, F3, 23) (dual of [251, 173, 24]-code) [i]
31Linear OA(387, 275, F3, 23) (dual of [275, 188, 24]-code) [i]
32Linear OA(3107, 276, F3, 31) (dual of [276, 169, 32]-code) [i]
33Linear OA(3105, 273, F3, 31) (dual of [273, 168, 32]-code) [i]
34Linear OA(3103, 271, F3, 30) (dual of [271, 168, 31]-code) [i]