Information on Result #611928
Linear OA(376, 243, F3, 23) (dual of [243, 167, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(387, 255, F3, 23) (dual of [255, 168, 24]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(382, 249, F3, 25) (dual of [249, 167, 26]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
3 | Linear OA(376, 248, F3, 23) (dual of [248, 172, 24]-code) | [i] | ✔ | |
4 | Linear OA(389, 256, F3, 26) (dual of [256, 167, 27]-code) | [i] | ✔ | |
5 | Linear OA(379, 256, F3, 23) (dual of [256, 177, 24]-code) | [i] | ✔ | |
6 | Linear OA(3102, 266, F3, 31) (dual of [266, 164, 32]-code) | [i] | ✔ | |
7 | Linear OA(3104, 271, F3, 31) (dual of [271, 167, 32]-code) | [i] | ✔ | |
8 | Linear OA(399, 266, F3, 29) (dual of [266, 167, 30]-code) | [i] | ✔ | |
9 | Linear OA(396, 263, F3, 27) (dual of [263, 167, 28]-code) | [i] | ✔ | |
10 | Linear OA(381, 263, F3, 23) (dual of [263, 182, 24]-code) | [i] | ✔ | |
11 | Linear OA(3113, 279, F3, 32) (dual of [279, 166, 33]-code) | [i] | ✔ | |
12 | Linear OA(3114, 281, F3, 32) (dual of [281, 167, 33]-code) | [i] | ✔ | |
13 | Linear OA(384, 271, F3, 23) (dual of [271, 187, 24]-code) | [i] | ✔ | |
14 | Linear OA(3102, 269, F3, 30) (dual of [269, 167, 31]-code) | [i] | ✔ | |
15 | Linear OA(3119, 283, F3, 33) (dual of [283, 164, 34]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
16 | Linear OA(3118, 281, F3, 33) (dual of [281, 163, 34]-code) | [i] | ✔ | |
17 | Linear OA(3112, 275, F3, 32) (dual of [275, 163, 33]-code) | [i] | ✔ | |
18 | Linear OA(3103, 268, F3, 31) (dual of [268, 165, 32]-code) | [i] | ✔ | |
19 | Linear OA(395, 259, F3, 27) (dual of [259, 164, 28]-code) | [i] | ✔ | |
20 | Linear OA(3101, 264, F3, 31) (dual of [264, 163, 32]-code) | [i] | ✔ | |
21 | Linear OA(398, 261, F3, 29) (dual of [261, 163, 30]-code) | [i] | ✔ | |
22 | Linear OA(3104, 276, F3, 29) (dual of [276, 172, 30]-code) | [i] | ✔ | |
23 | Linear OA(3103, 274, F3, 29) (dual of [274, 171, 30]-code) | [i] | ✔ | |
24 | Linear OA(3102, 272, F3, 29) (dual of [272, 170, 30]-code) | [i] | ✔ | |
25 | Linear OA(3101, 270, F3, 29) (dual of [270, 169, 30]-code) | [i] | ✔ | |
26 | Linear OA(3107, 275, F3, 31) (dual of [275, 168, 32]-code) | [i] | ✔ | |
27 | Linear OA(3100, 268, F3, 29) (dual of [268, 168, 30]-code) | [i] | ✔ | |
28 | Linear OA(388, 251, F3, 26) (dual of [251, 163, 27]-code) | [i] | ✔ | |
29 | Linear OA(383, 251, F3, 25) (dual of [251, 168, 26]-code) | [i] | ✔ | |
30 | Linear OA(378, 251, F3, 23) (dual of [251, 173, 24]-code) | [i] | ✔ | |
31 | Linear OA(387, 275, F3, 23) (dual of [275, 188, 24]-code) | [i] | ✔ | |
32 | Linear OA(3107, 276, F3, 31) (dual of [276, 169, 32]-code) | [i] | ✔ | |
33 | Linear OA(3105, 273, F3, 31) (dual of [273, 168, 32]-code) | [i] | ✔ | |
34 | Linear OA(3103, 271, F3, 30) (dual of [271, 168, 31]-code) | [i] | ✔ |