Information on Result #612200
Linear OA(3142, 729, F3, 37) (dual of [729, 587, 38]-code), using an extension Ce(36) of the primitive narrow-sense BCH-code C(I) with length 728 = 36−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3160, 748, F3, 37) (dual of [748, 588, 38]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(3166, 755, F3, 37) (dual of [755, 589, 38]-code) | [i] | ||
3 | Linear OA(3167, 755, F3, 37) (dual of [755, 588, 38]-code) | [i] | (u, u−v, u+v+w)-Construction | |
4 | Linear OA(3151, 764, F3, 37) (dual of [764, 613, 38]-code) | [i] | Varšamov–Edel Lengthening | |
5 | Linear OA(3152, 776, F3, 37) (dual of [776, 624, 38]-code) | [i] | ||
6 | Linear OA(3153, 791, F3, 37) (dual of [791, 638, 38]-code) | [i] | ||
7 | Linear OA(3154, 810, F3, 37) (dual of [810, 656, 38]-code) | [i] | ||
8 | Linear OA(3155, 831, F3, 37) (dual of [831, 676, 38]-code) | [i] | ||
9 | Linear OA(3156, 854, F3, 37) (dual of [854, 698, 38]-code) | [i] | ||
10 | Linear OA(3157, 879, F3, 37) (dual of [879, 722, 38]-code) | [i] | ||
11 | Linear OA(3148, 735, F3, 38) (dual of [735, 587, 39]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
12 | Linear OA(3143, 736, F3, 37) (dual of [736, 593, 38]-code) | [i] | ✔ | |
13 | Linear OA(3155, 742, F3, 39) (dual of [742, 587, 40]-code) | [i] | ✔ | |
14 | Linear OA(3157, 742, F3, 40) (dual of [742, 585, 41]-code) | [i] | ✔ | |
15 | Linear OA(3158, 745, F3, 40) (dual of [745, 587, 41]-code) | [i] | ✔ | |
16 | Linear OA(3143, 742, F3, 36) (dual of [742, 599, 37]-code) | [i] | ✔ | |
17 | Linear OA(3145, 742, F3, 37) (dual of [742, 597, 38]-code) | [i] | ✔ | |
18 | Linear OA(3146, 745, F3, 37) (dual of [745, 599, 38]-code) | [i] | ✔ | |
19 | Linear OA(3165, 749, F3, 41) (dual of [749, 584, 42]-code) | [i] | ✔ | |
20 | Linear OA(3166, 753, F3, 41) (dual of [753, 587, 42]-code) | [i] | ✔ | |
21 | Linear OA(3149, 754, F3, 37) (dual of [754, 605, 38]-code) | [i] | ✔ | |
22 | Linear OA(3147, 749, F3, 36) (dual of [749, 602, 37]-code) | [i] | ✔ | |
23 | Linear OA(3174, 757, F3, 43) (dual of [757, 583, 44]-code) | [i] | ✔ | |
24 | Linear OA(3176, 763, F3, 43) (dual of [763, 587, 44]-code) | [i] | ✔ | |
25 | Linear OA(3174, 761, F3, 42) (dual of [761, 587, 43]-code) | [i] | ✔ | |
26 | Linear OA(3150, 757, F3, 37) (dual of [757, 607, 38]-code) | [i] | ✔ | |
27 | Linear OA(3152, 763, F3, 37) (dual of [763, 611, 38]-code) | [i] | ✔ | |
28 | Linear OA(3150, 761, F3, 36) (dual of [761, 611, 37]-code) | [i] | ✔ | |
29 | Linear OA(3186, 769, F3, 44) (dual of [769, 583, 45]-code) | [i] | ✔ | |
30 | Linear OA(3187, 771, F3, 44) (dual of [771, 584, 45]-code) | [i] | ✔ | |
31 | Linear OA(3188, 775, F3, 44) (dual of [775, 587, 45]-code) | [i] | ✔ | |
32 | Linear OA(3157, 770, F3, 37) (dual of [770, 613, 38]-code) | [i] | ✔ | |
33 | Linear OA(3158, 772, F3, 37) (dual of [772, 614, 38]-code) | [i] | ✔ | |
34 | Linear OA(3159, 776, F3, 37) (dual of [776, 617, 38]-code) | [i] | ✔ | |
35 | Linear OA(3199, 786, F3, 46) (dual of [786, 587, 47]-code) | [i] | ✔ | |
36 | Linear OA(3195, 782, F3, 45) (dual of [782, 587, 46]-code) | [i] | ✔ | |
37 | Linear OA(3163, 783, F3, 37) (dual of [783, 620, 38]-code) | [i] | ✔ | |
38 | Linear OA(3159, 779, F3, 36) (dual of [779, 620, 37]-code) | [i] | ✔ | |
39 | Linear OA(3208, 795, F3, 47) (dual of [795, 587, 48]-code) | [i] | ✔ | |
40 | Linear OA(3167, 793, F3, 37) (dual of [793, 626, 38]-code) | [i] | ✔ | |
41 | Linear OA(3215, 802, F3, 48) (dual of [802, 587, 49]-code) | [i] | ✔ | |
42 | Linear OA(3176, 764, F3, 42) (dual of [764, 588, 43]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
43 | Linear OA(3156, 738, F3, 40) (dual of [738, 582, 41]-code) | [i] | ✔ | |
44 | Linear OA(3158, 747, F3, 39) (dual of [747, 589, 40]-code) | [i] | ✔ | |
45 | Linear OA(3160, 748, F3, 40) (dual of [748, 588, 41]-code) | [i] | ✔ | |
46 | Linear OA(3157, 745, F3, 39) (dual of [745, 588, 40]-code) | [i] | ✔ | |
47 | Linear OA(3150, 738, F3, 38) (dual of [738, 588, 39]-code) | [i] | ✔ | |
48 | Linear OA(3144, 738, F3, 37) (dual of [738, 594, 38]-code) | [i] | ✔ | |
49 | Linear OA(3146, 747, F3, 36) (dual of [747, 601, 37]-code) | [i] | ✔ | |
50 | Linear OA(3148, 748, F3, 37) (dual of [748, 600, 38]-code) | [i] | ✔ | |
51 | Linear OA(3145, 745, F3, 36) (dual of [745, 600, 37]-code) | [i] | ✔ | |
52 | Linear OA(3152, 764, F3, 36) (dual of [764, 612, 37]-code) | [i] | ✔ | |
53 | Linear OOA(3142, 243, F3, 3, 37) (dual of [(243, 3), 587, 38]-NRT-code) | [i] | OOA Folding |