Information on Result #612212
Linear OA(3111, 243, F3, 38) (dual of [243, 132, 39]-code), using an extension Ce(37) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,37], and designed minimum distance d ≥ |I|+1 = 38
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3111, 243, F3, 37) (dual of [243, 132, 38]-code) | [i] | Strength Reduction | |
2 | Linear OA(3112, 244, F3, 38) (dual of [244, 132, 39]-code) | [i] | Code Embedding in Larger Space | |
3 | Linear OA(3109, 241, F3, 36) (dual of [241, 132, 37]-code) | [i] | Truncation | |
4 | Linear OA(3118, 264, F3, 38) (dual of [264, 146, 39]-code) | [i] | Varšamov–Edel Lengthening | |
5 | Linear OA(3119, 270, F3, 38) (dual of [270, 151, 39]-code) | [i] | ||
6 | Linear OA(3117, 249, F3, 40) (dual of [249, 132, 41]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
7 | Linear OA(3112, 249, F3, 37) (dual of [249, 137, 38]-code) | [i] | ✔ | |
8 | Linear OA(3113, 247, F3, 38) (dual of [247, 134, 39]-code) | [i] | ✔ | |
9 | Linear OA(3114, 251, F3, 38) (dual of [251, 137, 39]-code) | [i] | ✔ | |
10 | Linear OA(3124, 256, F3, 41) (dual of [256, 132, 42]-code) | [i] | ✔ | |
11 | Linear OA(3112, 254, F3, 36) (dual of [254, 142, 37]-code) | [i] | ✔ | |
12 | Linear OA(3115, 253, F3, 38) (dual of [253, 138, 39]-code) | [i] | ✔ | |
13 | Linear OA(3116, 258, F3, 38) (dual of [258, 142, 39]-code) | [i] | ✔ | |
14 | Linear OA(3114, 256, F3, 37) (dual of [256, 142, 38]-code) | [i] | ✔ | |
15 | Linear OA(3133, 265, F3, 43) (dual of [265, 132, 44]-code) | [i] | ✔ | |
16 | Linear OA(3131, 263, F3, 42) (dual of [263, 132, 43]-code) | [i] | ✔ | |
17 | Linear OA(3119, 266, F3, 38) (dual of [266, 147, 39]-code) | [i] | ✔ | |
18 | Linear OA(3116, 263, F3, 36) (dual of [263, 147, 37]-code) | [i] | ✔ | |
19 | Linear OA(3139, 271, F3, 44) (dual of [271, 132, 45]-code) | [i] | ✔ | |
20 | Linear OA(3125, 277, F3, 38) (dual of [277, 152, 39]-code) | [i] | ✔ | |
21 | Linear OA(3119, 271, F3, 37) (dual of [271, 152, 38]-code) | [i] | ✔ | |
22 | Linear OA(3132, 288, F3, 38) (dual of [288, 156, 39]-code) | [i] | ✔ | |
23 | Linear OA(3123, 275, F3, 38) (dual of [275, 152, 39]-code) | [i] | ✔ | |
24 | Linear OA(3130, 259, F3, 42) (dual of [259, 129, 43]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
25 | Linear OA(3132, 260, F3, 43) (dual of [260, 128, 44]-code) | [i] | ✔ | |
26 | Linear OA(3129, 257, F3, 42) (dual of [257, 128, 43]-code) | [i] | ✔ | |
27 | Linear OA(3138, 273, F3, 43) (dual of [273, 135, 44]-code) | [i] | ✔ | |
28 | Linear OA(3137, 271, F3, 43) (dual of [271, 134, 44]-code) | [i] | ✔ | |
29 | Linear OA(3136, 269, F3, 43) (dual of [269, 133, 44]-code) | [i] | ✔ | |
30 | Linear OA(3123, 251, F3, 41) (dual of [251, 128, 42]-code) | [i] | ✔ | |
31 | Linear OA(3128, 261, F3, 41) (dual of [261, 133, 42]-code) | [i] | ✔ | |
32 | Linear OA(3121, 255, F3, 40) (dual of [255, 134, 41]-code) | [i] | ✔ | |
33 | Linear OA(3120, 253, F3, 40) (dual of [253, 133, 41]-code) | [i] | ✔ | |
34 | Linear OA(3113, 251, F3, 37) (dual of [251, 138, 38]-code) | [i] | ✔ | |
35 | Linear OA(3115, 259, F3, 36) (dual of [259, 144, 37]-code) | [i] | ✔ | |
36 | Linear OA(3118, 261, F3, 38) (dual of [261, 143, 39]-code) | [i] | ✔ | |
37 | Linear OA(3114, 257, F3, 36) (dual of [257, 143, 37]-code) | [i] | ✔ | |
38 | Linear OA(3124, 276, F3, 38) (dual of [276, 152, 39]-code) | [i] | ✔ | |
39 | Linear OA(3123, 274, F3, 38) (dual of [274, 151, 39]-code) | [i] | ✔ | |
40 | Linear OA(3122, 272, F3, 38) (dual of [272, 150, 39]-code) | [i] | ✔ | |
41 | Linear OA(3121, 270, F3, 38) (dual of [270, 149, 39]-code) | [i] | ✔ | |
42 | Linear OA(3120, 268, F3, 38) (dual of [268, 148, 39]-code) | [i] | ✔ | |
43 | Linear OA(3127, 282, F3, 36) (dual of [282, 155, 37]-code) | [i] | ✔ | |
44 | Linear OA(3128, 282, F3, 37) (dual of [282, 154, 38]-code) | [i] | ✔ | |
45 | Linear OA(3126, 280, F3, 36) (dual of [280, 154, 37]-code) | [i] | ✔ | |
46 | Linear OA(3130, 283, F3, 38) (dual of [283, 153, 39]-code) | [i] | ✔ | |
47 | Linear OA(3126, 279, F3, 37) (dual of [279, 153, 38]-code) | [i] | ✔ | |
48 | Linear OA(3124, 277, F3, 36) (dual of [277, 153, 37]-code) | [i] | ✔ | |
49 | Linear OA(3122, 275, F3, 35) (dual of [275, 153, 36]-code) | [i] | ✔ | |
50 | Linear OA(3130, 284, F3, 38) (dual of [284, 154, 39]-code) | [i] | ✔ | |
51 | Linear OA(3128, 281, F3, 38) (dual of [281, 153, 39]-code) | [i] | ✔ | |
52 | Linear OOA(3111, 81, F3, 3, 38) (dual of [(81, 3), 132, 39]-NRT-code) | [i] | OOA Folding |