Information on Result #612245

Linear OA(3116, 243, F3, 40) (dual of [243, 127, 41]-code), using an extension Ce(39) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3122, 260, F3, 40) (dual of [260, 138, 41]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(3121, 248, F3, 41) (dual of [248, 127, 42]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
3Linear OA(3117, 249, F3, 40) (dual of [249, 132, 41]-code) [i]
4Linear OA(3127, 254, F3, 42) (dual of [254, 127, 43]-code) [i]
5Linear OA(3129, 256, F3, 43) (dual of [256, 127, 44]-code) [i]
6Linear OA(3121, 254, F3, 40) (dual of [254, 133, 41]-code) [i]
7Linear OA(3122, 257, F3, 40) (dual of [257, 135, 41]-code) [i]
8Linear OA(3123, 260, F3, 40) (dual of [260, 137, 41]-code) [i]
9Linear OA(3121, 258, F3, 39) (dual of [258, 137, 40]-code) [i]
10Linear OA(3136, 263, F3, 44) (dual of [263, 127, 45]-code) [i]
11Linear OA(3124, 266, F3, 40) (dual of [266, 142, 41]-code) [i]
12Linear OA(3144, 271, F3, 46) (dual of [271, 127, 47]-code) [i]
13Linear OA(3131, 278, F3, 40) (dual of [278, 147, 41]-code) [i]
14Linear OA(3134, 285, F3, 40) (dual of [285, 151, 41]-code) [i]
15Linear OA(3135, 287, F3, 40) (dual of [287, 152, 41]-code) [i]
16Linear OA(3131, 283, F3, 39) (dual of [283, 152, 40]-code) [i]
17Linear OA(3145, 268, F3, 47) (dual of [268, 123, 48]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
18Linear OA(3128, 251, F3, 43) (dual of [251, 123, 44]-code) [i]
19Linear OA(3130, 259, F3, 42) (dual of [259, 129, 43]-code) [i]
20Linear OA(3132, 260, F3, 43) (dual of [260, 128, 44]-code) [i]
21Linear OA(3129, 257, F3, 42) (dual of [257, 128, 43]-code) [i]
22Linear OA(3123, 251, F3, 41) (dual of [251, 128, 42]-code) [i]
23Linear OA(3121, 255, F3, 40) (dual of [255, 134, 41]-code) [i]
24Linear OA(3120, 253, F3, 40) (dual of [253, 133, 41]-code) [i]
25Linear OA(3122, 260, F3, 39) (dual of [260, 138, 40]-code) [i]
26Linear OA(3130, 277, F3, 40) (dual of [277, 147, 41]-code) [i]
27Linear OA(3129, 275, F3, 40) (dual of [275, 146, 41]-code) [i]
28Linear OA(3128, 273, F3, 40) (dual of [273, 145, 41]-code) [i]
29Linear OA(3127, 271, F3, 40) (dual of [271, 144, 41]-code) [i]
30Linear OA(3126, 269, F3, 40) (dual of [269, 143, 41]-code) [i]
31Linear OA(3133, 282, F3, 40) (dual of [282, 149, 41]-code) [i]
32Linear OA(3132, 280, F3, 40) (dual of [280, 148, 41]-code) [i]
33Linear OA(3131, 279, F3, 40) (dual of [279, 148, 41]-code) [i]
34Linear OOA(3116, 81, F3, 3, 40) (dual of [(81, 3), 127, 41]-NRT-code) [i]OOA Folding