Information on Result #612560

Linear OA(3227, 243, F3, 134) (dual of [243, 16, 135]-code), using an extension Ce(133) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,133], and designed minimum distance d ≥ |I|+1 = 134

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3227, 243, F3, 133) (dual of [243, 16, 134]-code) [i]Strength Reduction
2Linear OA(3228, 244, F3, 134) (dual of [244, 16, 135]-code) [i]Code Embedding in Larger Space
3Linear OA(3225, 241, F3, 132) (dual of [241, 16, 133]-code) [i]Truncation
4Linear OA(3250, 263, F3, 149) (dual of [263, 13, 150]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
5Linear OA(3250, 264, F3, 148) (dual of [264, 14, 149]-code) [i]
6Linear OA(3250, 266, F3, 147) (dual of [266, 16, 148]-code) [i]
7Linear OA(3246, 259, F3, 146) (dual of [259, 13, 147]-code) [i]
8Linear OA(3247, 263, F3, 146) (dual of [263, 16, 147]-code) [i]
9Linear OA(3238, 254, F3, 140) (dual of [254, 16, 141]-code) [i]
10Linear OA(3228, 249, F3, 133) (dual of [249, 21, 134]-code) [i]
11Linear OA(3229, 247, F3, 134) (dual of [247, 18, 135]-code) [i]
12Linear OA(3230, 251, F3, 134) (dual of [251, 21, 135]-code) [i]
13Linear OA(3239, 265, F3, 134) (dual of [265, 26, 135]-code) [i]
14Linear OA(3248, 279, F3, 134) (dual of [279, 31, 135]-code) [i]
15Linear OA(3246, 277, F3, 133) (dual of [277, 31, 134]-code) [i]
16Linear OA(3249, 281, F3, 134) (dual of [281, 32, 135]-code) [i]
17Linear OA(3246, 278, F3, 132) (dual of [278, 32, 133]-code) [i]
18Linear OA(3243, 259, F3, 143) (dual of [259, 16, 144]-code) [i]
19Linear OA(3250, 271, F3, 142) (dual of [271, 21, 143]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
20Linear OA(3249, 269, F3, 142) (dual of [269, 20, 143]-code) [i]
21Linear OA(3248, 266, F3, 143) (dual of [266, 18, 144]-code) [i]
22Linear OA(3243, 261, F3, 140) (dual of [261, 18, 141]-code) [i]
23Linear OA(3250, 267, F3, 145) (dual of [267, 17, 146]-code) [i]
24Linear OA(3247, 264, F3, 143) (dual of [264, 17, 144]-code) [i]
25Linear OA(3241, 258, F3, 140) (dual of [258, 17, 141]-code) [i]
26Linear OA(3237, 261, F3, 133) (dual of [261, 24, 134]-code) [i]
27Linear OA(3238, 261, F3, 134) (dual of [261, 23, 135]-code) [i]
28Linear OA(3236, 259, F3, 133) (dual of [259, 23, 134]-code) [i]
29Linear OA(3236, 258, F3, 134) (dual of [258, 22, 135]-code) [i]
30Linear OA(3234, 256, F3, 133) (dual of [256, 22, 134]-code) [i]
31Linear OA(3247, 274, F3, 134) (dual of [274, 27, 135]-code) [i]
32Linear OA(3244, 271, F3, 132) (dual of [271, 27, 133]-code) [i]
33Linear OA(3244, 273, F3, 132) (dual of [273, 29, 133]-code) [i]
34Linear OA(3243, 271, F3, 134) (dual of [271, 28, 135]-code) [i]
35Linear OA(3242, 269, F3, 134) (dual of [269, 27, 135]-code) [i]
36Linear OA(3247, 279, F3, 133) (dual of [279, 32, 134]-code) [i]
37Linear OA(3244, 261, F3, 141) (dual of [261, 17, 142]-code) [i]
38Linear OOA(3227, 81, F3, 3, 134) (dual of [(81, 3), 16, 135]-NRT-code) [i]OOA Folding