Information on Result #613156

Linear OA(456, 64, F4, 42) (dual of [64, 8, 43]-code), using an extension Ce(41) of the primitive narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [1,41], and designed minimum distance d ≥ |I|+1 = 42

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(456, 64, F4, 41) (dual of [64, 8, 42]-code) [i]Strength Reduction
2Linear OA(456, 64, F4, 40) (dual of [64, 8, 41]-code) [i]
3Linear OA(456, 64, F4, 39) (dual of [64, 8, 40]-code) [i]
4Linear OA(456, 64, F4, 38) (dual of [64, 8, 39]-code) [i]
5Linear OA(456, 64, F4, 37) (dual of [64, 8, 38]-code) [i]
6Linear OA(458, 66, F4, 42) (dual of [66, 8, 43]-code) [i]Code Embedding in Larger Space
7Linear OA(4120, 128, F4, 85) (dual of [128, 8, 86]-code) [i]Repeating Each Code Word
8Linear OA(4221, 229, F4, 154) (dual of [229, 8, 155]-code) [i]Juxtaposition
9Linear OA(4126, 134, F4, 88) (dual of [134, 8, 89]-code) [i]
10Linear OA(4129, 137, F4, 90) (dual of [137, 8, 91]-code) [i]
11Linear OA(4133, 141, F4, 92) (dual of [141, 8, 93]-code) [i]
12Linear OA(4128, 136, F4, 90) (dual of [136, 8, 91]-code) [i]
13Linear OA(2176, 192, F2, 85) (dual of [192, 16, 86]-code) [i]Concatenation of Two Codes
14Linear OOA(2240, 128, F2, 2, 128) (dual of [(128, 2), 16, 129]-NRT-code) [i]Concatenation of Two NRT-Codes
15Linear OA(483, 91, F4, 56) (dual of [91, 8, 57]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
16Linear OA(462, 70, F4, 45) (dual of [70, 8, 46]-code) [i]
17Linear OA(489, 97, F4, 61) (dual of [97, 8, 62]-code) [i]
18Linear OA(485, 93, F4, 59) (dual of [93, 8, 60]-code) [i]
19Linear OOA(456, 32, F4, 2, 42) (dual of [(32, 2), 8, 43]-NRT-code) [i]OOA Folding