Information on Result #616666
Linear OA(16112, 256, F16, 68) (dual of [256, 144, 69]-code), using an extension Ce(67) of the primitive narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [1,67], and designed minimum distance d ≥ |I|+1 = 68
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(16112, 256, F16, 67) (dual of [256, 144, 68]-code) | [i] | Strength Reduction | |
2 | Linear OA(16112, 256, F16, 66) (dual of [256, 144, 67]-code) | [i] | ||
3 | Linear OA(16112, 256, F16, 65) (dual of [256, 144, 66]-code) | [i] | ||
4 | Linear OA(4224, 512, F4, 68) (dual of [512, 288, 69]-code) | [i] | Trace Code | |
5 | Linear OA(16119, 273, F16, 68) (dual of [273, 154, 69]-code) | [i] | Varšamov–Edel Lengthening | |
6 | Linear OA(16116, 262, F16, 68) (dual of [262, 146, 69]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
7 | Linear OA(16116, 260, F16, 70) (dual of [260, 144, 71]-code) | [i] | ✔ | |
8 | Linear OA(16117, 265, F16, 68) (dual of [265, 148, 69]-code) | [i] | ✔ | |
9 | Linear OA(16118, 268, F16, 68) (dual of [268, 150, 69]-code) | [i] | ✔ | |
10 | Linear OA(16122, 266, F16, 72) (dual of [266, 144, 73]-code) | [i] | ✔ | |
11 | Linear OA(16119, 271, F16, 68) (dual of [271, 152, 69]-code) | [i] | ✔ | |
12 | Linear OA(16120, 273, F16, 68) (dual of [273, 153, 69]-code) | [i] | ✔ | |
13 | Linear OA(16121, 275, F16, 68) (dual of [275, 154, 69]-code) | [i] | ✔ | |
14 | Linear OA(16119, 273, F16, 67) (dual of [273, 154, 68]-code) | [i] | ✔ | |
15 | Linear OA(16128, 272, F16, 74) (dual of [272, 144, 75]-code) | [i] | ✔ | |
16 | Linear OA(16122, 278, F16, 68) (dual of [278, 156, 69]-code) | [i] | ✔ | |
17 | Linear OA(16118, 273, F16, 65) (dual of [273, 155, 66]-code) | [i] | ✔ | |
18 | Linear OA(16117, 273, F16, 64) (dual of [273, 156, 65]-code) | [i] | ✔ | |
19 | Linear OA(16123, 280, F16, 68) (dual of [280, 157, 69]-code) | [i] | ✔ | |
20 | Linear OA(16124, 282, F16, 68) (dual of [282, 158, 69]-code) | [i] | ✔ | |
21 | Linear OA(16122, 280, F16, 67) (dual of [280, 158, 68]-code) | [i] | ✔ | |
22 | Linear OA(16125, 285, F16, 68) (dual of [285, 160, 69]-code) | [i] | ✔ | |
23 | Linear OA(16121, 280, F16, 65) (dual of [280, 159, 66]-code) | [i] | ✔ | |
24 | Linear OA(16120, 280, F16, 64) (dual of [280, 160, 65]-code) | [i] | ✔ | |
25 | Linear OA(16126, 288, F16, 68) (dual of [288, 162, 69]-code) | [i] | ✔ | |
26 | Linear OA(16128, 292, F16, 68) (dual of [292, 164, 69]-code) | [i] | ✔ | |
27 | Linear OA(16126, 289, F16, 67) (dual of [289, 163, 68]-code) | [i] | ✔ | |
28 | Linear OA(16125, 289, F16, 66) (dual of [289, 164, 67]-code) | [i] | ✔ | |
29 | Linear OA(16129, 294, F16, 68) (dual of [294, 165, 69]-code) | [i] | ✔ | |
30 | Linear OA(16130, 296, F16, 68) (dual of [296, 166, 69]-code) | [i] | ✔ | |
31 | Linear OA(16128, 294, F16, 67) (dual of [294, 166, 68]-code) | [i] | ✔ | |
32 | Linear OA(16124, 289, F16, 64) (dual of [289, 165, 65]-code) | [i] | ✔ | |
33 | Linear OA(16130, 298, F16, 67) (dual of [298, 168, 68]-code) | [i] | ✔ | |
34 | Linear OA(16127, 294, F16, 65) (dual of [294, 167, 66]-code) | [i] | ✔ | |
35 | Linear OA(16126, 294, F16, 64) (dual of [294, 168, 65]-code) | [i] | ✔ | |
36 | Linear OA(16130, 299, F16, 66) (dual of [299, 169, 67]-code) | [i] | ✔ | |
37 | Linear OA(16130, 275, F16, 73) (dual of [275, 145, 74]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
38 | Linear OA(16119, 274, F16, 66) (dual of [274, 155, 67]-code) | [i] | ✔ | |
39 | Linear OA(16122, 281, F16, 66) (dual of [281, 159, 67]-code) | [i] | ✔ | |
40 | Linear OOA(16112, 128, F16, 2, 68) (dual of [(128, 2), 144, 69]-NRT-code) | [i] | OOA Folding |