Information on Result #617579
Linear OA(2761, 19684, F27, 21) (dual of [19684, 19623, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 19684 | 276−1, defining interval I = [0,10], and minimum distance d ≥ |{−10,−9,…,10}|+1 = 22 (BCH-bound)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2771, 19712, F27, 21) (dual of [19712, 19641, 22]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(2772, 19722, F27, 21) (dual of [19722, 19650, 22]-code) | [i] | ||
3 | Linear OA(2773, 19732, F27, 21) (dual of [19732, 19659, 22]-code) | [i] | ||
4 | Linear OA(2774, 19736, F27, 21) (dual of [19736, 19662, 22]-code) | [i] | ||
5 | Linear OA(2775, 19748, F27, 21) (dual of [19748, 19673, 22]-code) | [i] | ||
6 | Linear OA(2776, 19752, F27, 21) (dual of [19752, 19676, 22]-code) | [i] | ||
7 | Linear OA(2777, 19760, F27, 21) (dual of [19760, 19683, 22]-code) | [i] | ||
8 | Linear OA(2778, 19789, F27, 21) (dual of [19789, 19711, 22]-code) | [i] | ||
9 | Linear OA(2779, 19867, F27, 21) (dual of [19867, 19788, 22]-code) | [i] | ||
10 | Linear OA(2780, 20413, F27, 21) (dual of [20413, 20333, 22]-code) | [i] | ||
11 | Linear OA(2780, 19705, F27, 21) (dual of [19705, 19625, 22]-code) | [i] | Generalized (u, u+v)-Construction | |
12 | Linear OA(2777, 19702, F27, 21) (dual of [19702, 19625, 22]-code) | [i] | (u, u−v, u+v+w)-Construction | |
13 | Linear OA(2778, 19740, F27, 21) (dual of [19740, 19662, 22]-code) | [i] | ||
14 | Linear OA(2779, 19750, F27, 21) (dual of [19750, 19671, 22]-code) | [i] | ||
15 | Linear OA(2780, 19760, F27, 21) (dual of [19760, 19680, 22]-code) | [i] | ||
16 | Linear OA(2771, 19695, F27, 21) (dual of [19695, 19624, 22]-code) | [i] | ✔ | Construction X with Cyclic Codes |
17 | Linear OA(2768, 19691, F27, 23) (dual of [19691, 19623, 24]-code) | [i] | ✔ | |
18 | Linear OA(2762, 19691, F27, 21) (dual of [19691, 19629, 22]-code) | [i] | ✔ | |
19 | Linear OA(2776, 19699, F27, 25) (dual of [19699, 19623, 26]-code) | [i] | ✔ | |
20 | Linear OA(2764, 19699, F27, 21) (dual of [19699, 19635, 22]-code) | [i] | ✔ | |
21 | Linear OA(2784, 19707, F27, 27) (dual of [19707, 19623, 28]-code) | [i] | ✔ | |
22 | Linear OA(2766, 19707, F27, 21) (dual of [19707, 19641, 22]-code) | [i] | ✔ | |
23 | Linear OA(2792, 19712, F27, 29) (dual of [19712, 19620, 30]-code) | [i] | ✔ | |
24 | Linear OA(2793, 19716, F27, 29) (dual of [19716, 19623, 30]-code) | [i] | ✔ | |
25 | Linear OA(2791, 19712, F27, 28) (dual of [19712, 19621, 29]-code) | [i] | ✔ | |
26 | Linear OA(2768, 19712, F27, 21) (dual of [19712, 19644, 22]-code) | [i] | ✔ | |
27 | Linear OA(2769, 19716, F27, 21) (dual of [19716, 19647, 22]-code) | [i] | ✔ | |
28 | Linear OA(2767, 19712, F27, 20) (dual of [19712, 19645, 21]-code) | [i] | ✔ | |
29 | Linear OA(27101, 19722, F27, 31) (dual of [19722, 19621, 32]-code) | [i] | ✔ | |
30 | Linear OA(27102, 19725, F27, 31) (dual of [19725, 19623, 32]-code) | [i] | ✔ | |
31 | Linear OA(27100, 19722, F27, 30) (dual of [19722, 19622, 31]-code) | [i] | ✔ | |
32 | Linear OA(2771, 19722, F27, 21) (dual of [19722, 19651, 22]-code) | [i] | ✔ | |
33 | Linear OA(2772, 19725, F27, 21) (dual of [19725, 19653, 22]-code) | [i] | ✔ | |
34 | Linear OA(27110, 19732, F27, 33) (dual of [19732, 19622, 34]-code) | [i] | ✔ | |
35 | Linear OA(27109, 19732, F27, 32) (dual of [19732, 19623, 33]-code) | [i] | ✔ |