Information on Result #619314
Linear OA(8135, 6561, F81, 18) (dual of [6561, 6526, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(970, 13122, F9, 18) (dual of [13122, 13052, 19]-code) | [i] | Trace Code | |
2 | Linear OA(8144, 6643, F81, 18) (dual of [6643, 6599, 19]-code) | [i] | (u, u+v)-Construction | |
3 | Linear OA(8145, 6661, F81, 18) (dual of [6661, 6616, 19]-code) | [i] | ||
4 | Linear OA(8146, 6677, F81, 18) (dual of [6677, 6631, 19]-code) | [i] | ||
5 | Linear OA(8147, 6679, F81, 18) (dual of [6679, 6632, 19]-code) | [i] | ||
6 | Linear OA(8148, 6725, F81, 18) (dual of [6725, 6677, 19]-code) | [i] | ||
7 | Linear OA(8150, 6889, F81, 18) (dual of [6889, 6839, 19]-code) | [i] | ||
8 | Linear OA(8149, 6743, F81, 18) (dual of [6743, 6694, 19]-code) | [i] | ||
9 | Linear OA(8150, 6577, F81, 18) (dual of [6577, 6527, 19]-code) | [i] | Generalized (u, u+v)-Construction | |
10 | Linear OA(8149, 6576, F81, 18) (dual of [6576, 6527, 19]-code) | [i] | ||
11 | Linear OA(8148, 6575, F81, 18) (dual of [6575, 6527, 19]-code) | [i] | (u, u−v, u+v+w)-Construction | |
12 | Linear OA(8149, 6577, F81, 18) (dual of [6577, 6528, 19]-code) | [i] | ||
13 | Linear OA(8150, 6725, F81, 18) (dual of [6725, 6675, 19]-code) | [i] | ||
14 | Linear OA(8137, 6563, F81, 19) (dual of [6563, 6526, 20]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
15 | Linear OA(8135, 6563, F81, 18) (dual of [6563, 6528, 19]-code) | [i] | ✔ | |
16 | Linear OA(8140, 6566, F81, 20) (dual of [6566, 6526, 21]-code) | [i] | ✔ | |
17 | Linear OA(8136, 6566, F81, 18) (dual of [6566, 6530, 19]-code) | [i] | ✔ | |
18 | Linear OA(8143, 6569, F81, 21) (dual of [6569, 6526, 22]-code) | [i] | ✔ | |
19 | Linear OA(8137, 6569, F81, 18) (dual of [6569, 6532, 19]-code) | [i] | ✔ | |
20 | Linear OA(8146, 6572, F81, 22) (dual of [6572, 6526, 23]-code) | [i] | ✔ | |
21 | Linear OA(8138, 6572, F81, 18) (dual of [6572, 6534, 19]-code) | [i] | ✔ | |
22 | Linear OA(8149, 6575, F81, 23) (dual of [6575, 6526, 24]-code) | [i] | ✔ | |
23 | Linear OA(8139, 6575, F81, 18) (dual of [6575, 6536, 19]-code) | [i] | ✔ | |
24 | Linear OA(8152, 6578, F81, 24) (dual of [6578, 6526, 25]-code) | [i] | ✔ | |
25 | Linear OA(8140, 6578, F81, 18) (dual of [6578, 6538, 19]-code) | [i] | ✔ | |
26 | Linear OA(8155, 6581, F81, 25) (dual of [6581, 6526, 26]-code) | [i] | ✔ | |
27 | Linear OA(8141, 6581, F81, 18) (dual of [6581, 6540, 19]-code) | [i] | ✔ | |
28 | Linear OA(8158, 6584, F81, 26) (dual of [6584, 6526, 27]-code) | [i] | ✔ | |
29 | Linear OA(8142, 6584, F81, 18) (dual of [6584, 6542, 19]-code) | [i] | ✔ | |
30 | Linear OA(8161, 6587, F81, 27) (dual of [6587, 6526, 28]-code) | [i] | ✔ | |
31 | Linear OA(8143, 6587, F81, 18) (dual of [6587, 6544, 19]-code) | [i] | ✔ | |
32 | Linear OA(8164, 6590, F81, 28) (dual of [6590, 6526, 29]-code) | [i] | ✔ | |
33 | Linear OA(8167, 6593, F81, 29) (dual of [6593, 6526, 30]-code) | [i] | ✔ | |
34 | Linear OA(8170, 6596, F81, 30) (dual of [6596, 6526, 31]-code) | [i] | ✔ | |
35 | Linear OA(8173, 6599, F81, 31) (dual of [6599, 6526, 32]-code) | [i] | ✔ | |
36 | Linear OA(8176, 6602, F81, 32) (dual of [6602, 6526, 33]-code) | [i] | ✔ | |
37 | Linear OA(8179, 6605, F81, 33) (dual of [6605, 6526, 34]-code) | [i] | ✔ | |
38 | Linear OA(8182, 6608, F81, 34) (dual of [6608, 6526, 35]-code) | [i] | ✔ | |
39 | Linear OOA(8135, 2187, F81, 3, 18) (dual of [(2187, 3), 6526, 19]-NRT-code) | [i] | OOA Folding | |
40 | Linear OOA(8135, 1640, F81, 4, 18) (dual of [(1640, 4), 6525, 19]-NRT-code) | [i] | ||
41 | Linear OOA(8135, 729, F81, 18, 18) (dual of [(729, 18), 13087, 19]-NRT-code) | [i] | OA Folding and Stacking |