Information on Result #619401
Linear OA(8159, 6561, F81, 30) (dual of [6561, 6502, 31]-code), using an extension Ce(29) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(9118, 13122, F9, 30) (dual of [13122, 13004, 31]-code) | [i] | Trace Code | |
2 | Linear OA(8174, 6643, F81, 30) (dual of [6643, 6569, 31]-code) | [i] | (u, u+v)-Construction | |
3 | Linear OA(8175, 6661, F81, 30) (dual of [6661, 6586, 31]-code) | [i] | ||
4 | Linear OA(8176, 6677, F81, 30) (dual of [6677, 6601, 31]-code) | [i] | ||
5 | Linear OA(8177, 6679, F81, 30) (dual of [6679, 6602, 31]-code) | [i] | ||
6 | Linear OA(8178, 6711, F81, 30) (dual of [6711, 6633, 31]-code) | [i] | ||
7 | Linear OA(8179, 6721, F81, 30) (dual of [6721, 6642, 31]-code) | [i] | ||
8 | Linear OA(8180, 6723, F81, 30) (dual of [6723, 6643, 31]-code) | [i] | ||
9 | Linear OA(8181, 6733, F81, 30) (dual of [6733, 6652, 31]-code) | [i] | ||
10 | Linear OA(8182, 6735, F81, 30) (dual of [6735, 6653, 31]-code) | [i] | ||
11 | Linear OA(8182, 6743, F81, 30) (dual of [6743, 6661, 31]-code) | [i] | ||
12 | Linear OA(8182, 6585, F81, 30) (dual of [6585, 6503, 31]-code) | [i] | Generalized (u, u+v)-Construction | |
13 | Linear OA(8180, 6583, F81, 30) (dual of [6583, 6503, 31]-code) | [i] | (u, u−v, u+v+w)-Construction | |
14 | Linear OA(8181, 6585, F81, 30) (dual of [6585, 6504, 31]-code) | [i] | ||
15 | Linear OA(8182, 6587, F81, 30) (dual of [6587, 6505, 31]-code) | [i] | ||
16 | Linear OA(8161, 6563, F81, 31) (dual of [6563, 6502, 32]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
17 | Linear OA(8159, 6563, F81, 30) (dual of [6563, 6504, 31]-code) | [i] | ✔ | |
18 | Linear OA(8164, 6566, F81, 32) (dual of [6566, 6502, 33]-code) | [i] | ✔ | |
19 | Linear OA(8160, 6566, F81, 30) (dual of [6566, 6506, 31]-code) | [i] | ✔ | |
20 | Linear OA(8167, 6569, F81, 33) (dual of [6569, 6502, 34]-code) | [i] | ✔ | |
21 | Linear OA(8161, 6569, F81, 30) (dual of [6569, 6508, 31]-code) | [i] | ✔ | |
22 | Linear OA(8170, 6572, F81, 34) (dual of [6572, 6502, 35]-code) | [i] | ✔ | |
23 | Linear OA(8162, 6572, F81, 30) (dual of [6572, 6510, 31]-code) | [i] | ✔ | |
24 | Linear OA(8173, 6575, F81, 35) (dual of [6575, 6502, 36]-code) | [i] | ✔ | |
25 | Linear OA(8163, 6575, F81, 30) (dual of [6575, 6512, 31]-code) | [i] | ✔ | |
26 | Linear OA(8176, 6578, F81, 36) (dual of [6578, 6502, 37]-code) | [i] | ✔ | |
27 | Linear OA(8164, 6578, F81, 30) (dual of [6578, 6514, 31]-code) | [i] | ✔ | |
28 | Linear OA(8179, 6581, F81, 37) (dual of [6581, 6502, 38]-code) | [i] | ✔ | |
29 | Linear OA(8165, 6581, F81, 30) (dual of [6581, 6516, 31]-code) | [i] | ✔ | |
30 | Linear OA(8182, 6584, F81, 38) (dual of [6584, 6502, 39]-code) | [i] | ✔ | |
31 | Linear OA(8166, 6584, F81, 30) (dual of [6584, 6518, 31]-code) | [i] | ✔ | |
32 | Linear OA(8167, 6587, F81, 30) (dual of [6587, 6520, 31]-code) | [i] | ✔ | |
33 | Linear OA(8168, 6590, F81, 30) (dual of [6590, 6522, 31]-code) | [i] | ✔ | |
34 | Linear OA(8169, 6593, F81, 30) (dual of [6593, 6524, 31]-code) | [i] | ✔ | |
35 | Linear OA(8170, 6596, F81, 30) (dual of [6596, 6526, 31]-code) | [i] | ✔ | |
36 | Linear OA(8171, 6599, F81, 30) (dual of [6599, 6528, 31]-code) | [i] | ✔ | |
37 | Linear OA(8172, 6602, F81, 30) (dual of [6602, 6530, 31]-code) | [i] | ✔ | |
38 | Linear OA(8173, 6605, F81, 30) (dual of [6605, 6532, 31]-code) | [i] | ✔ | |
39 | Linear OOA(8159, 2187, F81, 3, 30) (dual of [(2187, 3), 6502, 31]-NRT-code) | [i] | OOA Folding | |
40 | Linear OOA(8159, 1640, F81, 4, 30) (dual of [(1640, 4), 6501, 31]-NRT-code) | [i] | ||
41 | Linear OOA(8159, 437, F81, 30, 30) (dual of [(437, 30), 13051, 31]-NRT-code) | [i] | OA Folding and Stacking |