Information on Result #622027

Linear OA(3127, 138, F3, 77) (dual of [138, 11, 78]-code), using construction XX applied toC2 ⊂ C1 ⊂ D1 based on
  1. linear OA(3116, 121, F3, 80) (dual of [121, 5, 81]-code), using code C2 for u = 5 by de Boer and Brouwer [i]
  2. linear OA(3111, 121, F3, 71) (dual of [121, 10, 72]-code), using code C1 for u = 5 by de Boer and Brouwer [i]
  3. linear OA(3110, 121, F3, 66) (dual of [121, 11, 67]-code), using augmented code D1 for u = 5 by de Boer and Brouwer [i]
  4. linear OA(36, 12, F3, 5) (dual of [12, 6, 6]-code), using
  5. linear OA(34, 5, F3, 4) (dual of [5, 1, 5]-code or 5-arc in PG(3,3)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3127, 138, F3, 76) (dual of [138, 11, 77]-code) [i]Strength Reduction
2Linear OA(3125, 136, F3, 75) (dual of [136, 11, 76]-code) [i]Truncation
3Linear OA(3124, 135, F3, 74) (dual of [135, 11, 75]-code) [i]
4Linear OA(3123, 134, F3, 73) (dual of [134, 11, 74]-code) [i]
5Linear OA(3120, 131, F3, 70) (dual of [131, 11, 71]-code) [i]
6Linear OA(3119, 130, F3, 69) (dual of [130, 11, 70]-code) [i]
7Linear OOA(3127, 69, F3, 2, 77) (dual of [(69, 2), 11, 78]-NRT-code) [i]OOA Folding
8Linear OOA(3127, 46, F3, 3, 77) (dual of [(46, 3), 11, 78]-NRT-code) [i]