Information on Result #630150

Linear OA(2160, 192, F2, 63) (dual of [192, 32, 64]-code), using concatenation of two codes based on
  1. linear OA(1616, 24, F16, 15) (dual of [24, 8, 16]-code), using
  2. linear OA(24, 8, F2, 3) (dual of [8, 4, 4]-code or 8-cap in PG(3,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2160, 192, F2, 62) (dual of [192, 32, 63]-code) [i]Strength Reduction
2Linear OA(2160, 192, F2, 61) (dual of [192, 32, 62]-code) [i]
3Linear OA(2160, 192, F2, 60) (dual of [192, 32, 61]-code) [i]
4Linear OA(2161, 193, F2, 63) (dual of [193, 32, 64]-code) [i]Code Embedding in Larger Space
5Linear OA(2162, 194, F2, 63) (dual of [194, 32, 64]-code) [i]
6Linear OA(2163, 195, F2, 63) (dual of [195, 32, 64]-code) [i]
7Linear OA(2164, 196, F2, 63) (dual of [196, 32, 64]-code) [i]
8Linear OA(2165, 197, F2, 63) (dual of [197, 32, 64]-code) [i]
9Linear OA(2166, 198, F2, 63) (dual of [198, 32, 64]-code) [i]
10Linear OA(2167, 199, F2, 63) (dual of [199, 32, 64]-code) [i]
11Linear OA(2168, 200, F2, 63) (dual of [200, 32, 64]-code) [i]
12Linear OA(2169, 201, F2, 63) (dual of [201, 32, 64]-code) [i]
13Linear OA(2170, 202, F2, 63) (dual of [202, 32, 64]-code) [i]
14Linear OA(2171, 203, F2, 63) (dual of [203, 32, 64]-code) [i]
15Linear OA(2159, 191, F2, 62) (dual of [191, 32, 63]-code) [i]Truncation
16Linear OA(2158, 190, F2, 61) (dual of [190, 32, 62]-code) [i]
17Linear OA(2157, 189, F2, 60) (dual of [189, 32, 61]-code) [i]
18Linear OOA(2160, 96, F2, 2, 63) (dual of [(96, 2), 32, 64]-NRT-code) [i]OOA Folding
19Linear OOA(2160, 64, F2, 3, 63) (dual of [(64, 3), 32, 64]-NRT-code) [i]