Information on Result #630201

Linear OA(2196, 216, F2, 83) (dual of [216, 20, 84]-code), using concatenation of two codes based on
  1. linear OA(1622, 27, F16, 20) (dual of [27, 5, 21]-code), using
  2. linear OA(24, 8, F2, 3) (dual of [8, 4, 4]-code or 8-cap in PG(3,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2196, 216, F2, 82) (dual of [216, 20, 83]-code) [i]Strength Reduction
2Linear OA(2196, 216, F2, 81) (dual of [216, 20, 82]-code) [i]
3Linear OA(2196, 216, F2, 80) (dual of [216, 20, 81]-code) [i]
4Linear OA(2197, 217, F2, 83) (dual of [217, 20, 84]-code) [i]Code Embedding in Larger Space
5Linear OA(2198, 218, F2, 83) (dual of [218, 20, 84]-code) [i]
6Linear OA(2199, 219, F2, 83) (dual of [219, 20, 84]-code) [i]
7Linear OA(2195, 215, F2, 82) (dual of [215, 20, 83]-code) [i]Truncation
8Linear OA(2194, 214, F2, 81) (dual of [214, 20, 82]-code) [i]
9Linear OA(2193, 213, F2, 80) (dual of [213, 20, 81]-code) [i]
10Linear OOA(2196, 108, F2, 2, 83) (dual of [(108, 2), 20, 84]-NRT-code) [i]OOA Folding
11Linear OOA(2196, 72, F2, 3, 83) (dual of [(72, 3), 20, 84]-NRT-code) [i]