Information on Result #644774
Linear OA(1628, 64, F16, 22) (dual of [64, 36, 23]-code), using algebraic-geometric code AG(F,41P) based on function field F/F16 with g(F) = 6 and N(F) ≥ 65, using
- the Hermitian function field over F16 [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(1680, 104, F16, 45) (dual of [104, 24, 46]-code) | [i] | Repeating Each Code Word | |
2 | Linear OA(1679, 102, F16, 45) (dual of [102, 23, 46]-code) | [i] | ||
3 | Linear OA(2176, 320, F2, 45) (dual of [320, 144, 46]-code) | [i] | Concatenation of Two Codes | |
4 | Linear OA(2175, 315, F2, 45) (dual of [315, 140, 46]-code) | [i] | ||
5 | Linear OA(2174, 310, F2, 45) (dual of [310, 136, 46]-code) | [i] | ||
6 | Linear OA(2173, 305, F2, 45) (dual of [305, 132, 46]-code) | [i] | ||
7 | Linear OA(2172, 300, F2, 45) (dual of [300, 128, 46]-code) | [i] | ||
8 | Linear OA(2171, 295, F2, 45) (dual of [295, 124, 46]-code) | [i] | ||
9 | Linear OA(2170, 290, F2, 45) (dual of [290, 120, 46]-code) | [i] | ||
10 | Linear OA(2169, 285, F2, 45) (dual of [285, 116, 46]-code) | [i] | ||
11 | Linear OA(2168, 280, F2, 45) (dual of [280, 112, 46]-code) | [i] | ||
12 | Linear OA(2167, 275, F2, 45) (dual of [275, 108, 46]-code) | [i] | ||
13 | Linear OA(4120, 192, F4, 45) (dual of [192, 72, 46]-code) | [i] | ||
14 | Linear OA(4119, 189, F4, 45) (dual of [189, 70, 46]-code) | [i] | ||
15 | Linear OA(4118, 186, F4, 45) (dual of [186, 68, 46]-code) | [i] | ||
16 | Linear OA(4117, 183, F4, 45) (dual of [183, 66, 46]-code) | [i] | ||
17 | Linear OA(4116, 180, F4, 45) (dual of [180, 64, 46]-code) | [i] | ||
18 | Linear OA(4115, 177, F4, 45) (dual of [177, 62, 46]-code) | [i] | ||
19 | Linear OA(4114, 174, F4, 45) (dual of [174, 60, 46]-code) | [i] | ||
20 | Linear OA(4113, 171, F4, 45) (dual of [171, 58, 46]-code) | [i] | ||
21 | Linear OA(4112, 168, F4, 45) (dual of [168, 56, 46]-code) | [i] | ||
22 | Linear OA(4111, 165, F4, 45) (dual of [165, 54, 46]-code) | [i] | ||
23 | Linear OA(4110, 162, F4, 45) (dual of [162, 52, 46]-code) | [i] | ||
24 | Linear OA(4109, 159, F4, 45) (dual of [159, 50, 46]-code) | [i] | ||
25 | Linear OA(4108, 156, F4, 45) (dual of [156, 48, 46]-code) | [i] | ||
26 | Linear OA(4107, 153, F4, 45) (dual of [153, 46, 46]-code) | [i] | ||
27 | Linear OOA(2240, 192, F2, 2, 68) (dual of [(192, 2), 144, 69]-NRT-code) | [i] | Concatenation of Two NRT-Codes | |
28 | Linear OOA(2238, 189, F2, 2, 68) (dual of [(189, 2), 140, 69]-NRT-code) | [i] | ||
29 | Linear OOA(2236, 186, F2, 2, 68) (dual of [(186, 2), 136, 69]-NRT-code) | [i] | ||
30 | Linear OOA(2234, 183, F2, 2, 68) (dual of [(183, 2), 132, 69]-NRT-code) | [i] | ||
31 | Linear OOA(2232, 180, F2, 2, 68) (dual of [(180, 2), 128, 69]-NRT-code) | [i] | ||
32 | Linear OOA(2230, 177, F2, 2, 68) (dual of [(177, 2), 124, 69]-NRT-code) | [i] | ||
33 | Linear OOA(2228, 174, F2, 2, 68) (dual of [(174, 2), 120, 69]-NRT-code) | [i] | ||
34 | Linear OOA(2226, 171, F2, 2, 68) (dual of [(171, 2), 116, 69]-NRT-code) | [i] | ||
35 | Linear OOA(2224, 168, F2, 2, 68) (dual of [(168, 2), 112, 69]-NRT-code) | [i] | ||
36 | Linear OOA(2222, 165, F2, 2, 68) (dual of [(165, 2), 108, 69]-NRT-code) | [i] | ||
37 | Linear OOA(2220, 162, F2, 2, 68) (dual of [(162, 2), 104, 69]-NRT-code) | [i] | ||
38 | Linear OOA(2218, 159, F2, 2, 68) (dual of [(159, 2), 100, 69]-NRT-code) | [i] | ||
39 | Linear OOA(2216, 156, F2, 2, 68) (dual of [(156, 2), 96, 69]-NRT-code) | [i] | ||
40 | Linear OOA(2214, 153, F2, 2, 68) (dual of [(153, 2), 92, 69]-NRT-code) | [i] | ||
41 | Linear OA(1631, 67, F16, 24) (dual of [67, 36, 25]-code) | [i] | ✔ | Construction X with Algebraic-Geometric Codes |
42 | Linear OA(1629, 67, F16, 22) (dual of [67, 38, 23]-code) | [i] | ✔ | |
43 | Linear OA(1633, 69, F16, 25) (dual of [69, 36, 26]-code) | [i] | ✔ | |
44 | Linear OA(1630, 69, F16, 22) (dual of [69, 39, 23]-code) | [i] | ✔ | |
45 | Linear OA(1635, 71, F16, 26) (dual of [71, 36, 27]-code) | [i] | ✔ | |
46 | Linear OA(1631, 71, F16, 22) (dual of [71, 40, 23]-code) | [i] | ✔ | |
47 | Linear OA(1637, 73, F16, 27) (dual of [73, 36, 28]-code) | [i] | ✔ | |
48 | Linear OA(1632, 73, F16, 22) (dual of [73, 41, 23]-code) | [i] | ✔ | |
49 | Linear OA(1639, 75, F16, 28) (dual of [75, 36, 29]-code) | [i] | ✔ | |
50 | Linear OA(1633, 75, F16, 22) (dual of [75, 42, 23]-code) | [i] | ✔ | |
51 | Linear OA(1641, 77, F16, 29) (dual of [77, 36, 30]-code) | [i] | ✔ | |
52 | Linear OA(1634, 77, F16, 22) (dual of [77, 43, 23]-code) | [i] | ✔ | |
53 | Linear OA(1643, 79, F16, 30) (dual of [79, 36, 31]-code) | [i] | ✔ | |
54 | Linear OA(1635, 79, F16, 22) (dual of [79, 44, 23]-code) | [i] | ✔ | |
55 | Linear OA(1645, 81, F16, 31) (dual of [81, 36, 32]-code) | [i] | ✔ | |
56 | Linear OA(1648, 84, F16, 32) (dual of [84, 36, 33]-code) | [i] | ✔ | |
57 | Linear OA(1650, 86, F16, 33) (dual of [86, 36, 34]-code) | [i] | ✔ | |
58 | Linear OA(1652, 88, F16, 34) (dual of [88, 36, 35]-code) | [i] | ✔ | |
59 | Linear OA(1655, 91, F16, 35) (dual of [91, 36, 36]-code) | [i] | ✔ | |
60 | Linear OA(1657, 93, F16, 36) (dual of [93, 36, 37]-code) | [i] | ✔ | |
61 | Linear OA(1659, 95, F16, 37) (dual of [95, 36, 38]-code) | [i] | ✔ | |
62 | Linear OA(1661, 97, F16, 38) (dual of [97, 36, 39]-code) | [i] | ✔ | |
63 | Linear OA(1664, 100, F16, 39) (dual of [100, 36, 40]-code) | [i] | ✔ | |
64 | Linear OA(1666, 102, F16, 40) (dual of [102, 36, 41]-code) | [i] | ✔ | |
65 | Linear OA(1669, 105, F16, 41) (dual of [105, 36, 42]-code) | [i] | ✔ | |
66 | Linear OA(1671, 107, F16, 42) (dual of [107, 36, 43]-code) | [i] | ✔ | |
67 | Linear OA(1673, 109, F16, 43) (dual of [109, 36, 44]-code) | [i] | ✔ | |
68 | Linear OA(1676, 112, F16, 44) (dual of [112, 36, 45]-code) | [i] | ✔ | |
69 | Linear OA(1690, 115, F16, 56) (dual of [115, 25, 57]-code) | [i] | ||
70 | Linear OA(1689, 115, F16, 55) (dual of [115, 26, 56]-code) | [i] | ||
71 | Linear OA(1688, 115, F16, 54) (dual of [115, 27, 55]-code) | [i] | ||
72 | Linear OA(1687, 115, F16, 53) (dual of [115, 28, 54]-code) | [i] | ||
73 | Linear OA(1686, 115, F16, 52) (dual of [115, 29, 53]-code) | [i] | ||
74 | Linear OA(1685, 115, F16, 51) (dual of [115, 30, 52]-code) | [i] | ||
75 | Linear OA(1684, 115, F16, 50) (dual of [115, 31, 51]-code) | [i] | ||
76 | Linear OA(1683, 115, F16, 49) (dual of [115, 32, 50]-code) | [i] | ||
77 | Linear OA(1682, 115, F16, 48) (dual of [115, 33, 49]-code) | [i] | ||
78 | Linear OA(1681, 115, F16, 47) (dual of [115, 34, 48]-code) | [i] | ||
79 | Linear OA(1680, 115, F16, 46) (dual of [115, 35, 47]-code) | [i] | ||
80 | Linear OA(1679, 115, F16, 45) (dual of [115, 36, 46]-code) | [i] | ✔ | |
81 | Linear OA(1679, 115, F16, 45) (dual of [115, 36, 46]-code) | [i] | ||
82 | Linear OA(1678, 115, F16, 44) (dual of [115, 37, 45]-code) | [i] | ||
83 | Linear OA(1681, 117, F16, 46) (dual of [117, 36, 47]-code) | [i] | ✔ | |
84 | Linear OOA(1628, 32, F16, 2, 22) (dual of [(32, 2), 36, 23]-NRT-code) | [i] | OOA Folding |