Information on Result #657734
Linear OA(25638, 257, F256, 38) (dual of [257, 219, 39]-code or 257-arc in PG(37,256)), using algebraic-geometric code AG(F,109P) with degPÂ =Â 2 based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using the rational function field F256(x) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Extended Reed–Solomon Code [i]
- Algebraic-Geometric Codes Defined Using a Non-Rational Place [i]
- Algebraic-Geometric Codes Defined Using a Non-Rational Place [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(1676, 514, F16, 38) (dual of [514, 438, 39]-code) | [i] | Trace Code | |
2 | OA(3261, 257, S32, 38) | [i] | Discarding Parts of the Base for OAs | |
3 | OA(6451, 257, S64, 38) | [i] | ||
4 | OA(12844, 257, S128, 38) | [i] | ||
5 | Linear OA(25657, 514, F256, 38) (dual of [514, 457, 39]-code) | [i] | (u, u+v)-Construction | |
6 | Linear OA(25641, 260, F256, 40) (dual of [260, 219, 41]-code) | [i] | ✔ | Construction X with Algebraic-Geometric Codes |
7 | Linear OA(25639, 260, F256, 38) (dual of [260, 221, 39]-code) | [i] | ✔ | |
8 | Linear OA(25645, 264, F256, 42) (dual of [264, 219, 43]-code) | [i] | ✔ | |
9 | Linear OA(25641, 264, F256, 38) (dual of [264, 223, 39]-code) | [i] | ✔ | |
10 | Linear OA(25649, 268, F256, 44) (dual of [268, 219, 45]-code) | [i] | ✔ | |
11 | Linear OA(25643, 268, F256, 38) (dual of [268, 225, 39]-code) | [i] | ✔ | |
12 | Linear OA(25653, 272, F256, 46) (dual of [272, 219, 47]-code) | [i] | ✔ | |
13 | Linear OA(25645, 272, F256, 38) (dual of [272, 227, 39]-code) | [i] | ✔ | |
14 | Linear OA(25657, 276, F256, 48) (dual of [276, 219, 49]-code) | [i] | ✔ | |
15 | Linear OA(25647, 276, F256, 38) (dual of [276, 229, 39]-code) | [i] | ✔ | |
16 | Linear OA(25661, 280, F256, 50) (dual of [280, 219, 51]-code) | [i] | ✔ | |
17 | Linear OA(25649, 280, F256, 38) (dual of [280, 231, 39]-code) | [i] | ✔ | |
18 | Linear OA(25665, 284, F256, 52) (dual of [284, 219, 53]-code) | [i] | ✔ | |
19 | Linear OA(25651, 284, F256, 38) (dual of [284, 233, 39]-code) | [i] | ✔ | |
20 | Linear OA(25653, 288, F256, 38) (dual of [288, 235, 39]-code) | [i] | ✔ | |
21 | Linear OA(25655, 292, F256, 38) (dual of [292, 237, 39]-code) | [i] | ✔ | |
22 | Linear OA(25657, 296, F256, 38) (dual of [296, 239, 39]-code) | [i] | ✔ | |
23 | Linear OA(25659, 300, F256, 38) (dual of [300, 241, 39]-code) | [i] | ✔ | |
24 | Linear OA(25661, 304, F256, 38) (dual of [304, 243, 39]-code) | [i] | ✔ | |
25 | Linear OA(25643, 262, F256, 41) (dual of [262, 219, 42]-code) | [i] | ✔ | |
26 | Linear OA(25640, 262, F256, 38) (dual of [262, 222, 39]-code) | [i] | ✔ | |
27 | Linear OA(25655, 274, F256, 47) (dual of [274, 219, 48]-code) | [i] | ✔ | |
28 | Linear OA(25646, 274, F256, 38) (dual of [274, 228, 39]-code) | [i] | ✔ | |
29 | Linear OA(25667, 286, F256, 53) (dual of [286, 219, 54]-code) | [i] | ✔ | |
30 | Linear OA(25652, 286, F256, 38) (dual of [286, 234, 39]-code) | [i] | ✔ | |
31 | Linear OA(25658, 298, F256, 38) (dual of [298, 240, 39]-code) | [i] | ✔ | |
32 | Linear OA(25647, 266, F256, 43) (dual of [266, 219, 44]-code) | [i] | ✔ | |
33 | Linear OA(25642, 266, F256, 38) (dual of [266, 224, 39]-code) | [i] | ✔ | |
34 | Linear OA(25662, 306, F256, 38) (dual of [306, 244, 39]-code) | [i] | ✔ |