Information on Result #657991
Linear OA(25639, 257, F256, 39) (dual of [257, 218, 40]-code or 257-arc in PG(38,256)), using algebraic-geometric code AG(F, Q+107P) with degQ = 3 and degPÂ =Â 2 based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using the rational function field F256(x) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Extended Reed–Solomon Code [i]
- Expurgated Narrow-Sense BCH-Codes (BCH-Bound) [i]
- Algebraic-Geometric Codes Defined Using a Non-Rational Place [i]
- Algebraic-Geometric Codes Defined Using a Non-Rational Place [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(1678, 514, F16, 39) (dual of [514, 436, 40]-code) | [i] | Trace Code | |
2 | OA(3263, 257, S32, 39) | [i] | Discarding Parts of the Base for OAs | |
3 | OA(6452, 257, S64, 39) | [i] | ||
4 | OA(12845, 257, S128, 39) | [i] | ||
5 | Linear OA(25658, 514, F256, 39) (dual of [514, 456, 40]-code) | [i] | (u, u+v)-Construction | |
6 | Linear OA(25642, 260, F256, 41) (dual of [260, 218, 42]-code) | [i] | ✔ | Construction X with Algebraic-Geometric Codes |
7 | Linear OA(25640, 260, F256, 39) (dual of [260, 220, 40]-code) | [i] | ✔ | |
8 | Linear OA(25646, 264, F256, 43) (dual of [264, 218, 44]-code) | [i] | ✔ | |
9 | Linear OA(25642, 264, F256, 39) (dual of [264, 222, 40]-code) | [i] | ✔ | |
10 | Linear OA(25650, 268, F256, 45) (dual of [268, 218, 46]-code) | [i] | ✔ | |
11 | Linear OA(25644, 268, F256, 39) (dual of [268, 224, 40]-code) | [i] | ✔ | |
12 | Linear OA(25654, 272, F256, 47) (dual of [272, 218, 48]-code) | [i] | ✔ | |
13 | Linear OA(25646, 272, F256, 39) (dual of [272, 226, 40]-code) | [i] | ✔ | |
14 | Linear OA(25658, 276, F256, 49) (dual of [276, 218, 50]-code) | [i] | ✔ | |
15 | Linear OA(25648, 276, F256, 39) (dual of [276, 228, 40]-code) | [i] | ✔ | |
16 | Linear OA(25662, 280, F256, 51) (dual of [280, 218, 52]-code) | [i] | ✔ | |
17 | Linear OA(25650, 280, F256, 39) (dual of [280, 230, 40]-code) | [i] | ✔ | |
18 | Linear OA(25666, 284, F256, 53) (dual of [284, 218, 54]-code) | [i] | ✔ | |
19 | Linear OA(25652, 284, F256, 39) (dual of [284, 232, 40]-code) | [i] | ✔ | |
20 | Linear OA(25654, 288, F256, 39) (dual of [288, 234, 40]-code) | [i] | ✔ | |
21 | Linear OA(25656, 292, F256, 39) (dual of [292, 236, 40]-code) | [i] | ✔ | |
22 | Linear OA(25658, 296, F256, 39) (dual of [296, 238, 40]-code) | [i] | ✔ | |
23 | Linear OA(25660, 300, F256, 39) (dual of [300, 240, 40]-code) | [i] | ✔ | |
24 | Linear OA(25662, 304, F256, 39) (dual of [304, 242, 40]-code) | [i] | ✔ | |
25 | Linear OA(25664, 308, F256, 39) (dual of [308, 244, 40]-code) | [i] | ✔ | |
26 | Linear OA(25644, 262, F256, 42) (dual of [262, 218, 43]-code) | [i] | ✔ | |
27 | Linear OA(25641, 262, F256, 39) (dual of [262, 221, 40]-code) | [i] | ✔ | |
28 | Linear OA(25656, 274, F256, 48) (dual of [274, 218, 49]-code) | [i] | ✔ | |
29 | Linear OA(25647, 274, F256, 39) (dual of [274, 227, 40]-code) | [i] | ✔ | |
30 | Linear OA(25668, 286, F256, 54) (dual of [286, 218, 55]-code) | [i] | ✔ | |
31 | Linear OA(25653, 286, F256, 39) (dual of [286, 233, 40]-code) | [i] | ✔ | |
32 | Linear OA(25659, 298, F256, 39) (dual of [298, 239, 40]-code) | [i] | ✔ | |
33 | Linear OA(25648, 266, F256, 44) (dual of [266, 218, 45]-code) | [i] | ✔ | |
34 | Linear OA(25643, 266, F256, 39) (dual of [266, 223, 40]-code) | [i] | ✔ | |
35 | Linear OA(25663, 306, F256, 39) (dual of [306, 243, 40]-code) | [i] | ✔ |