Information on Result #658015
Linear OA(25615, 257, F256, 15) (dual of [257, 242, 16]-code or 257-arc in PG(14,256)), using algebraic-geometric code AG(F, Q+119P) with degQ = 3 and degPÂ =Â 2 based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using the rational function field F256(x) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Extended Reed–Solomon Code [i]
- Expurgated Narrow-Sense BCH-Codes (BCH-Bound) [i]
- Algebraic-Geometric Codes Defined Using a Non-Rational Place [i]
- Algebraic-Geometric Codes Defined Using a Non-Rational Place [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(1630, 514, F16, 15) (dual of [514, 484, 16]-code) | [i] | Trace Code | |
2 | OA(3224, 257, S32, 15) | [i] | Discarding Parts of the Base for OAs | |
3 | OA(6420, 257, S64, 15) | [i] | ||
4 | OA(12818, 257, S128, 15) | [i] | ||
5 | Linear OA(25646, 514, F256, 31) (dual of [514, 468, 32]-code) | [i] | (u, u+v)-Construction | |
6 | Linear OA(25647, 517, F256, 31) (dual of [517, 470, 32]-code) | [i] | ||
7 | Linear OA(25645, 514, F256, 30) (dual of [514, 469, 31]-code) | [i] | ||
8 | Linear OA(25646, 517, F256, 30) (dual of [517, 471, 31]-code) | [i] | ||
9 | Linear OA(25622, 514, F256, 15) (dual of [514, 492, 16]-code) | [i] | ||
10 | Linear OA(25647, 546, F256, 31) (dual of [546, 499, 32]-code) | [i] | ||
11 | Linear OA(25646, 546, F256, 30) (dual of [546, 500, 31]-code) | [i] | ||
12 | Linear OA(25618, 260, F256, 17) (dual of [260, 242, 18]-code) | [i] | ✔ | Construction X with Algebraic-Geometric Codes |
13 | Linear OA(25616, 260, F256, 15) (dual of [260, 244, 16]-code) | [i] | ✔ | |
14 | Linear OA(25622, 264, F256, 19) (dual of [264, 242, 20]-code) | [i] | ✔ | |
15 | Linear OA(25618, 264, F256, 15) (dual of [264, 246, 16]-code) | [i] | ✔ | |
16 | Linear OA(25626, 268, F256, 21) (dual of [268, 242, 22]-code) | [i] | ✔ | |
17 | Linear OA(25620, 268, F256, 15) (dual of [268, 248, 16]-code) | [i] | ✔ | |
18 | Linear OA(25630, 272, F256, 23) (dual of [272, 242, 24]-code) | [i] | ✔ | |
19 | Linear OA(25622, 272, F256, 15) (dual of [272, 250, 16]-code) | [i] | ✔ | |
20 | Linear OA(25634, 276, F256, 25) (dual of [276, 242, 26]-code) | [i] | ✔ | |
21 | Linear OA(25624, 276, F256, 15) (dual of [276, 252, 16]-code) | [i] | ✔ | |
22 | Linear OA(25638, 280, F256, 27) (dual of [280, 242, 28]-code) | [i] | ✔ | |
23 | Linear OA(25642, 284, F256, 29) (dual of [284, 242, 30]-code) | [i] | ✔ | |
24 | Linear OA(25646, 288, F256, 31) (dual of [288, 242, 32]-code) | [i] | ✔ | |
25 | Linear OA(25650, 292, F256, 33) (dual of [292, 242, 34]-code) | [i] | ✔ | |
26 | Linear OA(25654, 296, F256, 35) (dual of [296, 242, 36]-code) | [i] | ✔ | |
27 | Linear OA(25658, 300, F256, 37) (dual of [300, 242, 38]-code) | [i] | ✔ | |
28 | Linear OA(25662, 304, F256, 39) (dual of [304, 242, 40]-code) | [i] | ✔ | |
29 | Linear OA(25666, 308, F256, 41) (dual of [308, 242, 42]-code) | [i] | ✔ | |
30 | Linear OA(25620, 262, F256, 18) (dual of [262, 242, 19]-code) | [i] | ✔ | |
31 | Linear OA(25617, 262, F256, 15) (dual of [262, 245, 16]-code) | [i] | ✔ | |
32 | Linear OA(25632, 274, F256, 24) (dual of [274, 242, 25]-code) | [i] | ✔ | |
33 | Linear OA(25623, 274, F256, 15) (dual of [274, 251, 16]-code) | [i] | ✔ | |
34 | Linear OA(25644, 286, F256, 30) (dual of [286, 242, 31]-code) | [i] | ✔ | |
35 | Linear OA(25656, 298, F256, 36) (dual of [298, 242, 37]-code) | [i] | ✔ | |
36 | Linear OA(25668, 310, F256, 42) (dual of [310, 242, 43]-code) | [i] | ✔ | |
37 | Linear OA(25624, 266, F256, 20) (dual of [266, 242, 21]-code) | [i] | ✔ | |
38 | Linear OA(25619, 266, F256, 15) (dual of [266, 247, 16]-code) | [i] | ✔ | |
39 | Linear OA(25664, 306, F256, 40) (dual of [306, 242, 41]-code) | [i] | ✔ |