Information on Result #658020
Linear OA(25612, 260, F256, 11) (dual of [260, 248, 12]-code), using construction X applied to AG(F, Q+121P) ⊂ AG(F, Q+122P) based on
- linear OA(25611, 257, F256, 11) (dual of [257, 246, 12]-code or 257-arc in PG(10,256)), using algebraic-geometric code AG(F, Q+121P) with degQ = 3 and degPÂ =Â 2 [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using the rational function field F256(x) [i]
- linear OA(2569, 257, F256, 9) (dual of [257, 248, 10]-code or 257-arc in PG(8,256)), using algebraic-geometric code AG(F, Q+122P) with degQ = 3 and degPÂ =Â 2 [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257 (see above)
- linear OA(2561, 3, F256, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(2561, s, F256, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(448, 1040, F4, 11) (dual of [1040, 992, 12]-code) | [i] | Trace Code | |
2 | Linear OA(1624, 520, F16, 11) (dual of [520, 496, 12]-code) | [i] | ||
3 | OA(3220, 260, S32, 11) | [i] | Discarding Parts of the Base for OAs | |
4 | OA(6416, 260, S64, 11) | [i] | ||
5 | OA(12814, 260, S128, 11) | [i] | ||
6 | Linear OA(25636, 520, F256, 23) (dual of [520, 484, 24]-code) | [i] | (u, u+v)-Construction | |
7 | Linear OA(25637, 522, F256, 23) (dual of [522, 485, 24]-code) | [i] | ||
8 | Linear OA(25657, 65797, F256, 23) (dual of [65797, 65740, 24]-code) | [i] | ||
9 | Linear OA(25635, 520, F256, 22) (dual of [520, 485, 23]-code) | [i] | ||
10 | Linear OA(25655, 65796, F256, 22) (dual of [65796, 65741, 23]-code) | [i] | ||
11 | Linear OA(25617, 517, F256, 11) (dual of [517, 500, 12]-code) | [i] | ||
12 | Linear OA(25657, 65798, F256, 23) (dual of [65798, 65741, 24]-code) | [i] | ||
13 | Linear OA(25658, 65802, F256, 23) (dual of [65802, 65744, 24]-code) | [i] | ||
14 | Linear OA(25660, 65808, F256, 23) (dual of [65808, 65748, 24]-code) | [i] | ||
15 | Linear OA(25655, 65798, F256, 22) (dual of [65798, 65743, 23]-code) | [i] | ||
16 | Linear OA(25656, 65801, F256, 22) (dual of [65801, 65745, 23]-code) | [i] | ||
17 | Linear OA(25657, 65804, F256, 22) (dual of [65804, 65747, 23]-code) | [i] | ||
18 | Linear OA(25658, 65807, F256, 22) (dual of [65807, 65749, 23]-code) | [i] | ||
19 | Linear OA(25630, 65795, F256, 11) (dual of [65795, 65765, 12]-code) | [i] | Generalized (u, u+v)-Construction | |
20 | Linear OA(25664, 66054, F256, 23) (dual of [66054, 65990, 24]-code) | [i] | (u, u−v, u+v+w)-Construction | |
21 | Linear OA(25665, 66057, F256, 23) (dual of [66057, 65992, 24]-code) | [i] | ||
22 | Linear OA(25662, 66053, F256, 22) (dual of [66053, 65991, 23]-code) | [i] | ||
23 | Linear OA(25663, 66056, F256, 22) (dual of [66056, 65993, 23]-code) | [i] |