Information on Result #658586

Linear OA(925, 29, F9, 22) (dual of [29, 4, 23]-code), using construction X applied to AG(F,4P) ⊂ AG(F,6P) based on
  1. linear OA(924, 27, F9, 22) (dual of [27, 3, 23]-code), using algebraic-geometric code AG(F,4P) with known gap numbers [i] based on function field F/F9 with g(F) = 3 and N(F) ≥ 28, using the Hermitian function field over F9 [i]
  2. linear OA(923, 27, F9, 20) (dual of [27, 4, 21]-code), using algebraic-geometric code AG(F,6P) [i] based on function field F/F9 with g(F) = 3 and N(F) ≥ 28 (see above)
  3. linear OA(91, 2, F9, 1) (dual of [2, 1, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(9140, 145, F9, 114) (dual of [145, 5, 115]-code) [i]Generalized (u, u+v)-Construction
2Linear OA(9107, 111, F9, 94) (dual of [111, 4, 95]-code) [i]Juxtaposition
3Linear OA(9117, 121, F9, 102) (dual of [121, 4, 103]-code) [i]
4Linear OOA(3166, 87, F3, 2, 114) (dual of [(87, 2), 8, 115]-NRT-code) [i]Concatenation of Two NRT-Codes
5Linear OOA(3224, 116, F3, 2, 160) (dual of [(116, 2), 8, 161]-NRT-code) [i]
6Linear OOA(925, 14, F9, 2, 22) (dual of [(14, 2), 3, 23]-NRT-code) [i]OOA Folding