Information on Result #663143

Linear OA(733, 36, F7, 29) (dual of [36, 3, 30]-code), using generalized (u, u+v)-construction based on
  1. linear OA(74, 6, F7, 4) (dual of [6, 2, 5]-code or 6-arc in PG(3,7)), using
  2. linear OA(75, 6, F7, 5) (dual of [6, 1, 6]-code or 6-arc in PG(4,7)), using
  3. linear OA(76, 6, F7, 6) (dual of [6, 0, 7]-code or 6-arc in PG(5,7)), using
  4. linear OA(76, 6, F7, 6) (dual of [6, 0, 7]-code or 6-arc in PG(5,7)) (see above)
  5. linear OA(76, 6, F7, 6) (dual of [6, 0, 7]-code or 6-arc in PG(5,7)) (see above)
  6. linear OA(76, 6, F7, 6) (dual of [6, 0, 7]-code or 6-arc in PG(5,7)) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(732, 35, F7, 28) (dual of [35, 3, 29]-code) [i]Truncation
2Linear OA(731, 34, F7, 27) (dual of [34, 3, 28]-code) [i]
3Linear OA(730, 33, F7, 26) (dual of [33, 3, 27]-code) [i]
4Linear OA(729, 32, F7, 25) (dual of [32, 3, 26]-code) [i]
5Linear OA(728, 31, F7, 24) (dual of [31, 3, 25]-code) [i]
6Linear OA(727, 30, F7, 23) (dual of [30, 3, 24]-code) [i]
7Linear OA(725, 28, F7, 21) (dual of [28, 3, 22]-code) [i]
8Linear OA(724, 27, F7, 20) (dual of [27, 3, 21]-code) [i]
9Linear OA(723, 26, F7, 19) (dual of [26, 3, 20]-code) [i]
10Linear OA(722, 25, F7, 18) (dual of [25, 3, 19]-code) [i]
11Linear OOA(733, 18, F7, 2, 29) (dual of [(18, 2), 3, 30]-NRT-code) [i]OOA Folding
12Linear OOA(733, 12, F7, 3, 29) (dual of [(12, 3), 3, 30]-NRT-code) [i]