Information on Result #666494
Linear OA(2720, 531468, F27, 5) (dual of [531468, 531448, 6]-code), using generalized (u, u+v)-construction based on
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(270, 19684, F27, 0) (dual of [19684, 19684, 1]-code) (see above)
- linear OA(271, 19684, F27, 1) (dual of [19684, 19683, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(271, s, F27, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(271, 19684, F27, 1) (dual of [19684, 19683, 2]-code) (see above)
- linear OA(271, 19684, F27, 1) (dual of [19684, 19683, 2]-code) (see above)
- linear OA(274, 19684, F27, 2) (dual of [19684, 19680, 3]-code), using
- discarding factors / shortening the dual code based on linear OA(274, 20440, F27, 2) (dual of [20440, 20436, 3]-code), using
- Hamming code H(4,27) [i]
- discarding factors / shortening the dual code based on linear OA(274, 20440, F27, 2) (dual of [20440, 20436, 3]-code), using
- linear OA(2713, 19684, F27, 5) (dual of [19684, 19671, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 19684 | 276−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.