Information on Result #667731

Linear OA(32108, 32795, F32, 28) (dual of [32795, 32687, 29]-code), using generalized (u, u+v)-construction based on
  1. linear OA(322, 3, F32, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,32)), using
  2. linear OA(323, 3, F32, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,32) or 3-cap in PG(2,32)), using
  3. linear OA(323, 3, F32, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,32) or 3-cap in PG(2,32)) (see above)
  4. linear OA(323, 3, F32, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,32) or 3-cap in PG(2,32)) (see above)
  5. linear OA(323, 3, F32, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,32) or 3-cap in PG(2,32)) (see above)
  6. linear OA(323, 3, F32, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,32) or 3-cap in PG(2,32)) (see above)
  7. linear OA(323, 3, F32, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,32) or 3-cap in PG(2,32)) (see above)
  8. linear OA(323, 3, F32, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,32) or 3-cap in PG(2,32)) (see above)
  9. linear OA(323, 3, F32, 3) (dual of [3, 0, 4]-code or 3-arc in PG(2,32) or 3-cap in PG(2,32)) (see above)
  10. linear OA(3282, 32768, F32, 28) (dual of [32768, 32686, 29]-code), using
    • an extension Ce(27) of the primitive narrow-sense BCH-code C(I) with length 32767 = 323−1, defining interval I = [1,27], and designed minimum distance d ≥ |I|+1 = 28 [i]

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.