Information on Result #670471

Linear OA(8137, 6723, F81, 14) (dual of [6723, 6686, 15]-code), using (u, u+v)-construction based on
  1. linear OA(8110, 162, F81, 7) (dual of [162, 152, 8]-code), using
    • generalized (u, u+v)-construction [i] based on
      1. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code), using
      2. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      3. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      4. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      5. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      6. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      7. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      8. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      9. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      10. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      11. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      12. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      13. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      14. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      15. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      16. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      17. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      18. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      19. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      20. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      21. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      22. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      23. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      24. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      25. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      26. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      27. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      28. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      29. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      30. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      31. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      32. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      33. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      34. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      35. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      36. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      37. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      38. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      39. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      40. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      41. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      42. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      43. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      44. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      45. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      46. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      47. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      48. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      49. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      50. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      51. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      52. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      53. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      54. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      55. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      56. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      57. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      58. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      59. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      60. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      61. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      62. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      63. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      64. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      65. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      66. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      67. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      68. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      69. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      70. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      71. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      72. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      73. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      74. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
      75. linear OA(811, 2, F81, 1) (dual of [2, 1, 2]-code), using
      76. linear OA(811, 2, F81, 1) (dual of [2, 1, 2]-code) (see above)
      77. linear OA(811, 2, F81, 1) (dual of [2, 1, 2]-code) (see above)
      78. linear OA(811, 2, F81, 1) (dual of [2, 1, 2]-code) (see above)
      79. linear OA(812, 2, F81, 2) (dual of [2, 0, 3]-code or 2-arc in PG(1,81)), using
      80. linear OA(812, 2, F81, 2) (dual of [2, 0, 3]-code or 2-arc in PG(1,81)) (see above)
      81. linear OA(812, 2, F81, 2) (dual of [2, 0, 3]-code or 2-arc in PG(1,81)) (see above)
  2. linear OA(8127, 6561, F81, 14) (dual of [6561, 6534, 15]-code), using
    • an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 6560 = 812−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.